

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5666449/publications.pdf Version: 2024-02-01

LIANC LU

#	Article	IF	CITATIONS
1	ZIFâ€8 Derived Grapheneâ€Based Nitrogenâ€Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts. Angewandte Chemie - International Edition, 2014, 53, 14235-14239.	13.8	849
2	Reactive Multifunctional Templateâ€Induced Preparation of Feâ€Nâ€Doped Mesoporous Carbon Microspheres Towards Highly Efficient Electrocatalysts for Oxygen Reduction. Advanced Materials, 2016, 28, 7948-7955.	21.0	342
3	Space-confined synthesis of CoNi nanoalloy in N-doped porous carbon frameworks as efficient oxygen reduction catalyst for neutral and alkaline aluminum-air batteries. Energy Storage Materials, 2020, 27, 96-108.	18.0	63
4	Microstructure and mechanical properties of high chromium nickel-based superalloy fabricated by laser metal deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139185.	5.6	45
5	Effect of heat treatment on microstructure and tribological behavior of Ti–6Al–4V alloys fabricated by selective laser melting. Tribology International, 2021, 159, 106996.	5.9	43
6	Microstructure and property of laser clad Fe-based composite layer containing Nb and B4C powders. Journal of Alloys and Compounds, 2019, 802, 373-384.	5.5	42
7	High-temperature oxidation behaviour of high chromium superalloys additively manufactured by conventional or extreme high-speed laser metal deposition. Corrosion Science, 2020, 176, 108922.	6.6	40
8	A study on the additive manufacturing of a high chromium Nickel-based superalloy by extreme high-speed laser metal deposition. Optics and Laser Technology, 2021, 133, 106504.	4.6	36
9	Optimization of Process Parameters, Microstructure, and Properties of Laser Cladding Fe-Based Alloy on 42CrMo Steel Roller. Materials, 2018, 11, 2061.	2.9	28
10	Tribological investigation of additive manufacturing medical Ti6Al4V alloys against Al2O3 ceramic balls in artificial saliva. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103602.	3.1	25
11	Evolution of the microstructure and optimization of the tensile properties of the Ti–6Al–4V alloy by selective laser melting and heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140673.	5.6	25
12	Effect of temperature on oxidation resistance and isothermal oxidation mechanism of novel wear-resistant Fe-Cr-B-Al-C-Mn-Si alloy. Corrosion Science, 2020, 170, 108620.	6.6	24
13	Effect of Chromium Content on Microstructure, Hardness, and Wear Resistance of As-Cast Fe-Cr-B Alloy. Journal of Materials Engineering and Performance, 2019, 28, 6428-6437.	2.5	21
14	Temperature-dependent deformation mechanisms and microstructural degradation of a polycrystalline nickel-based superalloy. Journal of Alloys and Compounds, 2019, 775, 181-192.	5.5	17
15	Precipitation behavior and mechanical properties of Al-Zn-Mg-Cu matrix nanocomposites: Effects of SiC nanoparticles addition and heat treatment. Materials Characterization, 2021, 172, 110827.	4.4	17
16	Interface morphology and corrosion behavior of bulk Fe2B in liquid Al. Materials Characterization, 2019, 152, 1-11.	4.4	15
17	First-principles investigations of the stability, electronic structures, mechanical properties and thermodynamic properties of FexAlyCz compounds in Fe-Cr-B-Al-C alloy. Journal of Physics and Chemistry of Solids, 2020, 143, 109366.	4.0	12
18	Mechanical Properties, Electronic Structures, and Debye Temperature of NixBy Compounds Obtained by the First Principles Calculations. Crystals, 2018, 8, 451.	2.2	11

Jiang Ju

#	Article	IF	CITATIONS
19	Studies on as-cast microstructure and oxidation behavior of the Fe Cr B Al alloys at 1073†K. Vacuum, 2019, 164, 436-448.	3.5	9
20	Effect of Al addition on microstructure and properties of an Fe-B-Al alloy. Materialpruefung/Materials Testing, 2016, 58, 753-762.	2.2	8
21	Synergistic effect of Mo2C micro-particles and SiC nanoparticles on irradiation-induced hardening in dispersion-precipitation strengthened NiMo alloys. Scripta Materialia, 2020, 189, 1-6.	5.2	7
22	In situ nanoparticle-induced anti-oxidation mechanisms: Application to FeCrB alloys. Corrosion Science, 2021, 190, 109656.	6.6	7
23	Improved corrosion resistance of Ni-modified Fe-Cr-B steel in molten zinc via phase transformation and microstructure control. Surface and Coatings Technology, 2019, 374, 975-986.	4.8	6
24	Strain-magnetization effect in superelastic Ni-Mn-Ga microfiber. Scripta Materialia, 2019, 162, 397-401.	5.2	6
25	Investigation on the Microstructure and Wear Behavior of Laser-Cladded High Aluminum and Chromium Fe-B-C Coating. Materials, 2020, 13, 2443.	2.9	5
26	Phase diagram calculation and analyze on cast high vanadium wear-resistant alloy. Metallurgical Research and Technology, 2017, 114, 314.	0.7	4
27	Effect of laser welding speed on the weld quality of a 5A06 aluminum alloy. Materialpruefung/Materials Testing, 2018, 60, 1085-1092.	2.2	4
28	EFFECT OF LASER QUENCHING ON MICROSTRUCTURE AND PROPERTIES OF THE SURFACE OF TRACK MATERIALS. Surface Review and Letters, 2018, 25, 1950030.	1.1	3
29	EFFECT OF BORON CONTENT ON HIGH-TEMPERATURE OXIDATION RESISTANCE OF B-BEARING HIGH-SPEED STEEL. Surface Review and Letters, 2020, 27, 2050023.	1.1	2

The Formation Mechanism of a Self-Organized Periodic-Layered Structure at the Solid-(Cr,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{1}^{50}$ 302 Td $_{2.9}^{20}$