Bimal Lakhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5666216/publications.pdf Version: 2024-02-01

ΒΙΜΛΙ ΙΔΚΗΛΝΙ

#	Article	lF	CITATIONS
1	Individuals with Higher Levels of Physical Activity after Stroke Show Comparable Patterns of Myelin to Healthy Older Adults. Neurorehabilitation and Neural Repair, 2022, , 154596832211004.	1.4	3
2	Resting State Connectivity Is Modulated by Motor Learning in Individuals After Stroke. Neurorehabilitation and Neural Repair, 2021, 35, 513-524.	1.4	9
3	Brain Vital Signs in Elite Ice Hockey: Towards Characterizing Objective and Specific Neurophysiological Reference Values for Concussion Management. Frontiers in Neuroscience, 2021, 15, 670563.	1.4	3
4	Eccentric rehabilitation induces white matter plasticity and sensorimotor recovery in chronic spinal cord injury. Experimental Neurology, 2021, 346, 113853.	2.0	13
5	Brain Vital Signs Detect Cognitive Improvements During Combined Physical Therapy and Neuromodulation in Rehabilitation From Severe Traumatic Brain Injury: A Case Report. Frontiers in Human Neuroscience, 2020, 14, 347.	1.0	8
6	Brain Vital Signs Detect Information Processing Differences When Neuromodulation Is Used During Cognitive Skills Training. Frontiers in Human Neuroscience, 2020, 14, 358.	1.0	8
7	Neuroplasticity of Cortical Planning for Initiating Stepping Poststroke: A Case Series. Journal of Neurologic Physical Therapy, 2020, 44, 164-172.	0.7	3
8	Exercise increases caudate dopamine release and ventral striatal activation in Parkinson's disease. Movement Disorders, 2019, 34, 1891-1900.	2.2	99
9	Human translingual neurostimulation alters resting brain activity in high-density EEG. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 60.	2.4	21
10	Symmetry of cortical planning for initiating stepping in sub-acute stroke. Clinical Neurophysiology, 2018, 129, 787-796.	0.7	8
11	Hemispheric asymmetry in myelin after stroke is related to motor impairment and function. NeuroImage: Clinical, 2017, 14, 344-353.	1.4	23
12	Predicting Motor Sequence Learning in Individuals With Chronic Stroke. Neurorehabilitation and Neural Repair, 2017, 31, 95-104.	1.4	28
13	Can augmented feedback facilitate learning a reactive balance task among older adults?. Experimental Brain Research, 2017, 235, 293-304.	0.7	17
14	Motor Skill Acquisition Promotes Human Brain Myelin Plasticity. Neural Plasticity, 2016, 2016, 1-7.	1.0	74
15	Exploring the Role of Accelerometers in the Measurement of Real World Upper-Limb Use After Stroke. Brain Impairment, 2016, 17, 16-33.	0.5	90
16	Evaluating interhemispheric cortical responses to transcranial magnetic stimulation in chronic stroke: A TMS-EEG investigation. Neuroscience Letters, 2016, 618, 25-30.	1.0	50
17	Clinician's Commentary on Pak et al Physiotherapy Canada Physiotherapie Canada, 2015, 67, 9-9.	0.3	1
18	Visual feedback of the centre of gravity to optimize standing balance. Gait and Posture, 2015, 41, 499-503.	0.6	34

Bimal Lakhani

#	Article	IF	CITATIONS
19	Motor and Visuospatial Attention and Motor Planning After Stroke: Considerations for the Rehabilitation of Standing Balance and Gait. Physical Therapy, 2015, 95, 1423-1432.	1.1	30
20	Compensatory motor network connectivity is associated with motor sequence learning after subcortical stroke. Behavioural Brain Research, 2015, 286, 136-145.	1.2	25
21	Applications of Electroencephalography to Characterize Brain Activity. Journal of Neurologic Physical Therapy, 2015, 39, 43-51.	0.7	17
22	Autonomic contributions in postural control: a review of the evidence. Reviews in the Neurosciences, 2014, 25, 687-97.	1.4	13
23	Speed of processing in the primary motor cortex: A continuous theta burst stimulation study. Behavioural Brain Research, 2014, 261, 177-184.	1.2	6
24	Impaired Reactive Stepping Among Patients Ready for Discharge From Inpatient Stroke Rehabilitation. Physical Therapy, 2014, 94, 1755-1764.	1.1	53
25	Timing of response differentiation in human motor cortex during a speeded Go/No-Go task. Neuroscience Research, 2014, 85, 65-68.	1.0	0
26	â€~Priming' the brain to generate rapid upper-limb reactions. Experimental Brain Research, 2013, 230, 261-270.	0.7	2
27	Time to disengage: holding an object influences the execution of rapid compensatory reach-to-grasp reactions for recovery from whole-body instability. Experimental Brain Research, 2013, 231, 191-199.	0.7	10
28	Impairments in Systems Underlying Control of Balance in COPD. Chest, 2012, 141, 1496-1503.	0.4	127
29	Determinants of Limb Preference for Initiating Compensatory Stepping Poststroke. Archives of Physical Medicine and Rehabilitation, 2012, 93, 1179-1184.	0.5	53
30	Electrophysiological Correlates of Changes in Reaction Time Based on Stimulus Intensity. PLoS ONE, 2012, 7, e36407.	1.1	23
31	Characterizing the determinants of limb preference for compensatory stepping in healthy young adults. Gait and Posture, 2011, 33, 200-204.	0.6	31
32	Does the movement matter? Determinants of the latency of temporally urgent motor reactions. Brain Research, 2011, 1416, 35-43.	1.1	12
33	Training Rapid Stepping Responses in an Individual With Stroke. Physical Therapy, 2011, 91, 958-969.	1.1	65
34	Compensatory stepping responses in individuals with stroke: A pilot study. Physiotherapy Theory and Practice, 2011, 27, 299-309.	0.6	48
35	Perturbation-evoked electrodermal responses are sensitive to stimulus and context-dependent manipulations of task challenge. Neuroscience Letters, 2010, 485, 217-221.	1.0	12
36	Poster 37: Perturbation Evoked Compensatory Stepping Responses in Persons With Stroke. Archives of Physical Medicine and Rehabilitation, 2008, 89, e37-e38.	0.5	1