
Mahsa Dabagh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5666173/publications.pdf Version: 2024-02-01

Μλήςλ Πλάλομ

#	Article	IF	CITATIONS
1	Localization of Rolling and Firm-Adhesive Interactions Between Circulating Tumor Cells and the Microvasculature Wall. Cellular and Molecular Bioengineering, 2020, 13, 141-154.	2.1	15
2	Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature. PLoS ONE, 2019, 14, e0211418.	2.5	19
3	Hemodynamic and morphological characteristics of a growing cerebral aneurysm. Neurosurgical Focus, 2019, 47, E13.	2.3	25
4	Impact of diversity of morphological characteristics and Reynolds number on local hemodynamics in basilar aneurysms. AICHE Journal, 2018, 64, 2792-2802.	3.6	1
5	Mechanotransmission in endothelial cells subjected to oscillatory and multi-directional shear flow. Journal of the Royal Society Interface, 2017, 14, 20170185.	3.4	37
6	Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque. Computers in Biology and Medicine, 2015, 66, 39-46.	7.0	4
7	Effects of severity and location of stenosis on the hemodynamics in human aorta and its branches. Medical and Biological Engineering and Computing, 2015, 53, 463-476.	2.8	15
8	Shear-induced force transmission in a multicomponent, multicell model of the endothelium. Journal of the Royal Society Interface, 2014, 11, 20140431.	3.4	24
9	A Computational Model to Assess Poststenting Wall Stresses Dependence on Plaque Structure and Stenosis Severity in Coronary Artery. Mathematical Problems in Engineering, 2014, 2014, 1-12.	1.1	1
10	Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. Journal of Non-Newtonian Fluid Mechanics, 2014, 207, 42-52.	2.4	91
11	Hemodynamic Features in Stenosed Coronary Arteries: CFD Analysis Based on Histological Images. Journal of Applied Mathematics, 2013, 2013, 1-11.	0.9	7
12	SIMULATION OF PULSATILE BLOOD FLOW THROUGH STENOTIC ARTERY CONSIDERING DIFFERENT BLOOD RHEOLOGIES: COMPARISON OF 3D AND 2D-AXISYMMETRIC MODELS. Biomedical Engineering - Applications, Basis and Communications, 2013, 25, 1350023.	0.6	7
13	Finite Element Modelling of Pulsatile Blood Flow in Idealized Model of Human Aortic Arch: Study of Hypotension and Hypertension. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-14.	1.3	66
14	The Effect of Hypertension on the Transport of LDL Across the Deformable Arterial Wall. , 2010, , .		0
15	The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H983-H996.	3.2	64
16	The study of wall deformation and flow distribution with transmural pressure by three-dimensional model of thoracic aorta wall. Medical Engineering and Physics, 2009, 31, 816-824.	1.7	7
17	Molecular Transport through Arterial Wall Composed of Smooth Muscle Cells and a Homogeneous Fiber Matrix. Journal of Porous Media, 2009, 12, 201-212.	1.9	2
18	The Role of Micropores Structure in Conductive and Convective Heat Transfer within Porous Media. Journal of Porous Media, 2009, 12, 301-311.	1.9	2

Mahsa Dabagh

#	Article	IF	CITATIONS
19	The Influence of Wall Deformation on Transmural Flow in Thoracic Aorta: Three-Dimensional Simulations. IFMBE Proceedings, 2009, , 293-297.	0.3	0
20	The Role of Arterial Wall Deformation on the Shear Stress over the Cardiovascular Smooth Muscle Cells: Computations in Two-Dimensional Geometry. IFMBE Proceedings, 2009, , 1999-2002.	0.3	0
21	Distribution of shear stress over smooth muscle cells in deformable arterial wall. Medical and Biological Engineering and Computing, 2008, 46, 649-657.	2.8	17
22	Stability of flow and kinetic energy dissipation in 2D annular shear flows of inelastic hard disk assemblies. Journal of Physics: Conference Series, 2007, 64, 012019.	0.4	0
23	Effect of the shape and configuration of smooth muscle cells on the diffusion of ATP through the arterial wall. Medical and Biological Engineering and Computing, 2007, 45, 1005-1014.	2.8	6
24	Various Configurations of Arterial Smooth Muscle Cells Affect Molecular Transport in the Arterial Wall. , 2006, , .		0
25	Effects of polydimethylsiloxane grafting on the calcification, physical properties, and biocompatibility of polyurethane in a heart valve. Journal of Applied Polymer Science, 2005, 98, 758-766.	2.6	44
26	Mechanotransduction in Endothelial Cells in Vicinity of Cancer Cells. Cellular and Molecular Bioengineering, 0, , .	2.1	1