Kyle Armour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5666159/publications.pdf

Version: 2024-02-01

54	4,346	29 h-index	54
papers	citations		g-index
71	71	71	4314
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Near Invariance of Poleward Atmospheric Heat Transport in Response to Midlatitude Orography. Journal of Climate, 2022, 35, 4099-4113.	1.2	1
2	Seasonality in Arctic Warming Driven by Sea Ice Effective Heat Capacity. Journal of Climate, 2022, 35, 1629-1642.	1.2	16
3	The Role of Atlantic Basin Geometry in Meridional Overturning Circulation. Journal of Physical Oceanography, 2022, 52, 475-492.	0.7	2
4	Resolution Dependence of Atmosphere–Ocean Interactions and Water Mass Transformation in the North Atlantic. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	8
5	Estimating the timing of geophysical commitment to 1.5 and 2.0 °C of global warming. Nature Climate Change, 2022, 12, 547-552.	8.1	23
6	Two-Way Teleconnections between the Southern Ocean and the Tropical Pacific via a Dynamic Feedback. Journal of Climate, 2022, 35, 6267-6282.	1.2	20
7	Radiative and Dynamic Controls on Atmospheric Heat Transport over Different Planetary Rotation Rates. Journal of Climate, 2021, 34, 3543-3554.	1.2	3
8	Slow Modes of Global Temperature Variability and Their Impact on Climate Sensitivity Estimates. Journal of Climate, 2021, 34, 8717-8738.	1.2	5
9	Contributions to Polar Amplification in CMIP5 and CMIP6 Models. Frontiers in Earth Science, 2021, 9, .	0.8	55
10	Three Flavors of Radiative Feedbacks and Their Implications for Estimating Equilibrium Climate Sensitivity. Geophysical Research Letters, 2021, 48, e2021GL092983.	1.5	11
11	Biased Estimates of Equilibrium Climate Sensitivity and Transient Climate Response Derived From Historical CMIP6 Simulations. Geophysical Research Letters, 2021, 48, .	1.5	15
12	An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 2020, 58, e2019RG000678.	9.0	498
13	Antarctic Elevation Drives Hemispheric Asymmetry in Polar Lapse Rate Climatology and Feedback. Geophysical Research Letters, 2020, 47, e2020GL088965.	1.5	16
14	The Partitioning of Meridional Heat Transport from the Last Glacial Maximum to CO2 Quadrupling in Coupled Climate Models. Journal of Climate, 2020, 33, 4141-4165.	1.2	28
15	Strong remote control of future equatorial warming by off-equatorial forcing. Nature Climate Change, 2020, 10, 124-129.	8.1	32
16	New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES. Geophysical Research Letters, 2020, 47, e2019GL086705.	1.5	39
17	Pattern Recognition Methods to Separate Forced Responses from Internal Variability in Climate Model Ensembles and Observations. Journal of Climate, 2020, 33, 8693-8719.	1.2	53
18	Intermodel Spread in the Pattern Effect and Its Contribution to Climate Sensitivity in CMIP5 and CMIP6 Models. Journal of Climate, 2020, 33, 7755-7775.	1.2	77

#	Article	IF	Citations
19	Plant Physiology Increases the Magnitude and Spread of the Transient Climate Response to CO2 in CMIP6 Earth System Models. Journal of Climate, 2020, 33, 8561-8578.	1.2	20
20	Revisiting the surface-energy-flux perspective on the sensitivity of global precipitation to climate change. Climate Dynamics, 2019, 52, 3983-3995.	1.7	17
21	Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green's Function Approach: The Preeminence of the Western Pacific. Journal of Climate, 2019, 32, 5471-5491.	1.2	96
22	Meridional Atmospheric Heat Transport Constrained by Energetics and Mediated by Large-Scale Diffusion. Journal of Climate, 2019, 32, 3655-3680.	1.2	44
23	Ocean Circulation Signatures of North Pacific Decadal Variability. Geophysical Research Letters, 2019, 46, 1690-1701.	1.5	19
24	Ocean–Atmosphere Dynamical Coupling Fundamental to the Atlantic Multidecadal Oscillation. Journal of Climate, 2019, 32, 251-272.	1.2	74
25	Contributions of Greenhouse Gas Forcing and the Southern Annular Mode to Historical Southern Ocean Surface Temperature Trends. Geophysical Research Letters, 2018, 45, 1086-1097.	1.5	36
26	Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks. Journal of Climate, 2018, 31, 3187-3206.	1.2	35
27	Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 2018, 8, 1076-1081.	8.1	216
28	Insights into the Zonal-Mean Response of the Hydrologic Cycle to Global Warming from a Diffusive Energy Balance Model. Journal of Climate, 2018, 31, 7481-7493.	1.2	28
29	Quantifying climate feedbacks in polar regions. Nature Communications, 2018, 9, 1919.	5.8	254
30	Radiative Feedbacks From Stochastic Variability in Surface Temperature and Radiative Imbalance. Geophysical Research Letters, 2018, 45, 5082-5094.	1.5	21
31	Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity. Geophysical Research Letters, 2018, 45, 8490-8499.	1.5	116
32	Sources of Uncertainty in the Meridional Pattern of Climate Change. Geophysical Research Letters, 2018, 45, 9131-9140.	1.5	26
33	Distinct Mechanisms of Ocean Heat Transport Into the Arctic Under Internal Variability and Climate Change. Geophysical Research Letters, 2018, 45, 7692-7700.	1.5	32
34	Climate constraint reflects forced signal. Nature, 2018, 563, E6-E9.	13.7	9
35	Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nature Climate Change, 2017, 7, 331-335.	8.1	114
36	Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophysical Research Letters, 2017, 44, 9008-9019.	1.5	126

#	Article	IF	CITATIONS
37	Relative roles of surface temperature and climate forcing patterns in the inconstancy of radiative feedbacks. Geophysical Research Letters, 2017, 44, 7455-7463.	1.5	33
38	Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Climate Dynamics, 2017, 48, 1595-1609.	1.7	85
39	Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 2016, 9, 549-554.	5.4	381
40	Climate sensitivity on the rise. Nature Climate Change, 2016, 6, 896-897.	8.1	11
41	The remote impacts of climate feedbacks on regional climate predictability. Nature Geoscience, 2015, 8, 135-139.	5.4	88
42	The ocean's role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dynamics, 2015, 44, 2287-2299.	1.7	162
43	The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130040.	1.6	114
44	The Interannual Variability of Tropical Precipitation and Interhemispheric Energy Transport. Journal of Climate, 2014, 27, 3377-3392.	1.2	56
45	The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophysical Research Letters, 2014, 41, 1071-1078.	1.5	175
46	Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophysical Research Letters, 2014, 41, 2108-2116.	1.5	130
47	Shortwave and longwave radiative contributions to global warming under increasing CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16700-16705.	3.3	70
48	Time-Varying Climate Sensitivity from Regional Feedbacks. Journal of Climate, 2013, 26, 4518-4534.	1.2	291
49	Climate Sensitivity of the Community Climate System Model, Version 4. Journal of Climate, 2012, 25, 3053-3070.	1.2	190
50	Climate commitment in an uncertain world. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	30
51	How sensitive is climate sensitivity?. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	33
52	The reversibility of sea ice loss in a state-of-the-art climate model. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	75
53	Persistence and Inherent Predictability of Arctic Sea Ice in a GCM Ensemble and Observations. Journal of Climate, 2011, 24, 231-250.	1.2	218
54	Controls on Arctic Sea Ice from First-Year and Multiyear Ice Survivability. Journal of Climate, 2011, 24, 2378-2390.	1.2	9