List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5665759/publications.pdf Version: 2024-02-01

FRICLECAM

#	Article	IF	CITATIONS
1	The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature, 2003, 423, 309-312.	13.7	562
2	Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncolmmunology, 2016, 5, e1062968.	2.1	247
3	UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO Journal, 2005, 24, 180-189.	3.5	243
4	A Key Presynaptic Role in Transformation for a Widespread Bacterial Protein: DprA Conveys Incoming ssDNA to RecA. Cell, 2007, 130, 824-836.	13.5	237
5	Adsorption of DNA to Mica Mediated by Divalent Counterions: A Theoretical and Experimental Study. Biophysical Journal, 2003, 85, 2507-2518.	0.2	209
6	A Type IV Pilus Mediates DNA Binding during Natural Transformation in Streptococcus pneumoniae. PLoS Pathogens, 2013, 9, e1003473.	2.1	147
7	High-resolution AFM imaging of single-stranded DNA-binding (SSB) proteinDNA complexes. Nucleic Acids Research, 2007, 35, e58-e58.	6.5	130
8	Structural characterization of filaments formed by human Xrcc4–Cernunnos/XLF complex involved in nonhomologous DNA end-joining. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12663-12668.	3.3	126
9	Nucleosome Chiral Transition under Positive Torsional Stress in Single Chromatin Fibers. Molecular Cell, 2007, 27, 135-147.	4.5	122
10	The Srs2 Helicase Activity Is Stimulated by Rad51 Filaments on dsDNA: Implications for Crossover Incidence during Mitotic Recombination. Molecular Cell, 2008, 29, 243-254.	4.5	111
11	Conformational Analysis of a 139 Base-pair DNA Fragment Containing a Single-stranded Break and Its Interaction with Human Poly(ADP-ribose) Polymerase. Journal of Molecular Biology, 1994, 235, 1062-1071.	2.0	106
12	Contribution of DNA Conformation and Topology in Right-handed DNA Wrapping by the Bacillus subtilis LrpC Protein. Journal of Biological Chemistry, 2003, 278, 5333-5342.	1.6	87
13	Targeting the Deregulated Spliceosome Core Machinery in Cancer Cells Triggers mTOR Blockade and Autophagy. Cancer Research, 2013, 73, 2247-2258.	0.4	86
14	Multiple binding of repressed mRNAs by the P-body protein Rck/p54. Rna, 2012, 18, 1702-1715.	1.6	79
15	XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nature Structural and Molecular Biology, 2018, 25, 971-980.	3.6	78
16	Anionic Polyelectrolyte Adsorption on Mica Mediated by Multivalent Cations: A Solution to DNA Imaging by Atomic Force Microscopy under High Ionic Strengths. Langmuir, 2006, 22, 6651-6660.	1.6	77
17	Extracellular membrane vesicles harbouring viral genomes. Environmental Microbiology, 2014, 16, 1167-1175.	1.8	70
18	Efficient DNA Transfection Mediated by the C-Terminal Domain of Human Immunodeficiency Virus Type 1 Viral Protein R. Journal of Virology, 2000, 74, 5424-5431.	1.5	65

#	Article	IF	CITATIONS
19	An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro. Nucleic Acids Research, 2007, 35, 6042-6051.	6.5	65
20	Influence of the Internalization Pathway on the Efficacy of siRNA Delivery by Cationic Fluorescent Nanodiamonds in the Ewing Sarcoma Cell Model. PLoS ONE, 2012, 7, e52207.	1.1	57
21	Reversible Binding of DNA on NiCl2-Treated Mica by Varying the Ionic Strength. Langmuir, 2003, 19, 2536-2539.	1.6	56
22	G-quartets direct assembly of HIV-1 nucleocapsid protein along single-stranded DNA. Nucleic Acids Research, 2003, 31, 5754-5763.	6.5	55
23	The Cationic Amphipathic α-Helix of HIV-1 Viral Protein R (Vpr) Binds to Nucleic Acids, Permeabilizes Membranes, and Efficiently Transfects Cells. Journal of Biological Chemistry, 2003, 278, 18110-18116.	1.6	53
24	Rouse model with transient intramolecular contacts on a timescale of seconds recapitulates folding and fluctuation of yeast chromosomes. Nucleic Acids Research, 2019, 47, 6195-6207.	6.5	53
25	Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. Biomaterials, 2015, 45, 93-98.	5.7	49
26	Transmission Electron Microscopy Reveals an Optimal HIV-1 Nucleocapsid Aggregation with Single-stranded Nucleic Acids and the Mature HIV-1 Nucleocapsid Protein. Journal of Molecular Biology, 2006, 364, 496-511.	2.0	45
27	In vitro role of Rad54 in Rad51-ssDNA filament-dependent homology search and synaptic complexes formation. Nature Communications, 2019, 10, 4058.	5.8	45
28	The EcoRlâ^'DNA Complex as a Model for Investigating Proteinâ^'DNA Interactions by Atomic Force Microscopy. Biochemistry, 2006, 45, 14675-14682.	1.2	42
29	The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya. Biochemical Society Transactions, 2009, 37, 29-35.	1.6	42
30	HIV-1 Protease and Reverse Transcriptase Control the Architecture of Their Nucleocapsid Partner. PLoS ONE, 2007, 2, e669.	1.1	42
31	G-quartets assembly within a G-rich DNA flap. A possible event at the center of the HIV-1 genome. Nucleic Acids Research, 2002, 30, 5276-5283.	6.5	41
32	The rollingâ€circle plasmid pTN1 from the hyperthermophilic archaeon <i>Thermococcus nautilus</i> . Molecular Microbiology, 2007, 66, 357-370.	1.2	39
33	Study of the DNA/ethidium bromide interactions on mica surface by atomic force microscope: Influence of the surface friction. Biopolymers, 2005, 77, 53-62.	1.2	37
34	C-terminal region of bacterial Ku controls DNA bridging, DNA threading and recruitment of DNA ligase D for double strand breaks repair. Nucleic Acids Research, 2016, 44, 4785-4806.	6.5	37
35	Srs2 removes deadly recombination intermediates independently of its interaction with SUMO-modified PCNA. Nucleic Acids Research, 2008, 36, 4964-4974.	6.5	36
36	DNA Bending Induced by the Archaebacterial Histone-like Protein MC1. Journal of Molecular Biology, 1999, 285, 1011-1021.	2.0	35

#	Article	IF	CITATIONS
37	Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. Scientific Reports, 2017, 7, 5586.	1.6	35
38	Comparative observations of biological specimens, especially DNA and filamentous actin molecules in atomic force, tunnelling and electron microscopes. Microscopy Microanalysis Microstructures, 1992, 3, 457-470.	0.4	35
39	Specific DNAâ^'Protein Interactions on Mica Investigated by Atomic Force Microscopy. Langmuir, 2010, 26, 2618-2623.	1.6	34
40	Synthesis of a multibranched porphyrin–oligonucleotide scaffold for the construction of DNA-based nano-architectures. Organic and Biomolecular Chemistry, 2014, 12, 2778-2783.	1.5	34
41	Static Curvature and Flexibility Measurements of DNA with Microscopy. A Simple Renormalization Method, its Assessment by Experiment and Simulation. Journal of Molecular Biology, 1999, 285, 997-1009.	2.0	33
42	Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells. Scientific Reports, 2016, 6, 36341.	1.6	33
43	The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation. DNA Repair, 2018, 64, 10-25.	1.3	30
44	Rad51 Polymerization Reveals a New Chromatin Remodeling Mechanism. PLoS ONE, 2008, 3, e3643.	1.1	29
45	Stimulation of the Human RAD51 Nucleofilament Restricts HIV-1 Integration <i>In Vitro</i> and in Infected Cells. Journal of Virology, 2012, 86, 513-526.	1.5	29
46	Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds. Nanoscale, 2016, 8, 11588-11594.	2.8	29
47	Human Immunodeficiency Virus Type 1 Central DNA Flap: Dynamic Terminal Product of Plus-Strand Displacement DNA Synthesis Catalyzed by Reverse Transcriptase Assisted by Nucleocapsid Protein. Journal of Virology, 2001, 75, 3301-3313.	1.5	28
48	Constitutive autophagy contributes to resistance to TP53-mediated apoptosis in Epstein-Barr virus-positive latency III B-cell lymphoproliferations. Autophagy, 2015, 11, 2275-2287.	4.3	28
49	Investigation of Radiation Damage in DNA by Using Atomic Force Microscopy. Radiation Protection Dosimetry, 2002, 99, 143-146.	0.4	27
50	A new approach to DNA bending by polyamines and its implication in DNA condensation. European Biophysics Journal, 2006, 35, 214-223.	1.2	25
51	A protein ballet around the viral genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: From nucleocapsid-condensed RNA to Vpr-bridged DNA. Virus Research, 2013, 171, 287-303.	1.1	25
52	Mechanism of stimulation of DNA binding of the transcription factors by human apurinic/apyrimidinic endonuclease 1, APE1. DNA Repair, 2019, 82, 102698.	1.3	24
53	Auto-assembly of <i>E. coli</i> DsrA small noncoding RNA: Molecular characteristics and functional consequences. RNA Biology, 2009, 6, 434-445.	1.5	22
54	Linker Histones Incorporation Maintains Chromatin Fiber Plasticity. Biophysical Journal, 2011, 100, 2726-2735.	0.2	22

#	Article	IF	CITATIONS
55	Conformational Changes of DNA Minicircles upon the Binding of the Archaebacterial Histone-like Protein MC1. Journal of Biological Chemistry, 1995, 270, 6286-6291.	1.6	21
56	Rad52 Sumoylation Prevents the Toxicity of Unproductive Rad51 Filaments Independently of the Anti-Recombinase Srs2. PLoS Genetics, 2013, 9, e1003833.	1.5	20
57	Rad52-Rad51 association is essential to protect Rad51 filaments against Srs2, but facultative for filament formation. ELife, 2018, 7, .	2.8	19
58	Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint. Haematologica, 2016, 101, 1469-1478.	1.7	18
59	Study of the DnaB:DciA interplay reveals insights into the primary mode of loading of the bacterial replicative helicase. Nucleic Acids Research, 2021, 49, 6569-6586.	6.5	18
60	Atomic Force Microscopy Imaging of DNA under Macromolecular Crowding Conditions. Biomacromolecules, 2007, 8, 3712-3717.	2.6	17
61	Quantitative electron microscopic analysis of DNA-protein interactions. Journal of Electron Microscopy Technique, 1991, 18, 375-386.	1.1	16
62	Studying the effect of a charged surface on the interaction of bleomycin with DNA using an atomic force microscope. European Biophysics Journal, 2005, 34, 200-207.	1.2	16
63	Unique genome replication mechanism of the archaeal virus <scp>AFV</scp> 1. Molecular Microbiology, 2014, 92, 1313-1325.	1.2	16
64	Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. Chemical Record, 2018, 18, 849-857.	2.9	16
65	Preactivated Oxazaphosphorines Designed for Isophosphoramide Mustard Delivery as Bulk Form or Nanoassemblies: Synthesis and Proof of Concept. Journal of Medicinal Chemistry, 2015, 58, 705-717.	2.9	14
66	Biotechnological applications of the sepiolite interactions with bacteria: Bacterial transformation and DNA extraction. Applied Clay Science, 2020, 191, 105613.	2.6	14
67	Auto-assembly as a new regulatory mechanism of noncoding RNA. Cell Cycle, 2009, 8, 952-954.	1.3	13
68	Nucleosomeâ€remodelling machines and other molecular motors observed at the singleâ€molecule level. FEBS Journal, 2011, 278, 3596-3607.	2.2	12
69	In vivo and in vitro characterization of DdrC, a DNA damage response protein in Deinococcus radiodurans bacterium. PLoS ONE, 2017, 12, e0177751.	1.1	11
70	Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 409-419.	2.5	8
71	ATP-Independent Cooperative Binding of Yeast Isw1a to Bare and Nucleosomal DNA. PLoS ONE, 2012, 7, e31845.	1.1	8
72	Multiple topological labeling for imaging single plasmids. Analytical Biochemistry, 2007, 362, 55-62.	1.1	7

#	Article	IF	CITATIONS
73	Recombinases and Related Proteins in the Context of Homologous Recombination Analyzed by Molecular Microscopy. Methods in Molecular Biology, 2018, 1805, 251-270.	0.4	7
74	Verotoxin-1-Induced ER Stress Triggers Apoptotic or Survival Pathways in Burkitt Lymphoma Cells. Toxins, 2020, 12, 316.	1.5	7
75	Modular Imaging Scaffold for Single-Particle Electron Microscopy. ACS Nano, 2021, 15, 4186-4196.	7.3	7
76	Smart DNA Vectors Based on Cyclodextrin Polymers: Compaction and Endosomal Release. Pharmaceutical Research, 2012, 29, 384-396.	1.7	6
77	Are electron and near-field microscopies complementary?. Microscopy Microanalysis Microstructures, 1994, 5, 329-340.	0.4	6
78	Method combining BAC film and positive staining for the characterization of DNA intermediates by dark-field electron microscopy. Biology Methods and Protocols, 2020, 5, bpaa012.	1.0	5
79	A New Supramolecular Structure Made of Two Different Plasmids Linked by a Circular Oligonucleotide. ChemBioChem, 2006, 7, 912-915.	1.3	3
80	Poly-isoprenylated ifosfamide analogs: Preactivated antitumor agents as free formulation or nanoassemblies. International Journal of Pharmaceutics, 2017, 532, 748-756.	2.6	1
81	Microscopies moléculaires des complexes nucléoprotéiques. , 2011, , 12-17.	0.1	1
82	Dark Field Transmission Electron Microscopy Imaging for Biological and Soft Matter Systems. Macromolecular Symposia, 2016, 361, 73-81.	0.4	0