Massimo Pellizzari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5665740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production and Characterization of a Modified Hot Work Tool Steel by Laser Powder Bed Fusion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2642-2651.	1.1	7
2	Interaction between WC and Inconel 625 under Solid and Liquid State Sintering Conditions. Metals, 2021, 11, 666.	1.0	4
3	Tempering behavior of a direct laser deposited hot work tool steel: Influence of quenching on secondary hardening and microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141126.	2.6	21
4	Architectural design of MWCNT reinforced AlSi10Mg matrix composites with comprehensive mechanical properties. Composites Communications, 2021, 25, 100716.	3.3	10
5	Towards controlling intrinsic heat treatment of maraging steel during laser directed energy deposition. Scripta Materialia, 2021, 201, 113973.	2.6	27
6	Polymer-derived silicon nitride aerogels as shape stabilizers for low and high-temperature thermal energy storage. Journal of the European Ceramic Society, 2021, 41, 5484-5494.	2.8	21
7	Fracture Toughness of a Hot Work Tool Steel Fabricated by Laserâ€Powder Bed Fusion Additive Manufacturing. Steel Research International, 2020, 91, 1900449.	1.0	9
8	Investigation on Solid-State Phase Transformations in a 2510 Duplex Stainless Steel Grade. Metals, 2020, 10, 967.	1.0	13
9	Effects of building direction and defect sensitivity on the fatigue behavior of additively manufactured H13 tool steel. Theoretical and Applied Fracture Mechanics, 2020, 108, 102634.	2.1	32
10	Spark Plasma Sintering of Copper Matrix Composites Reinforced with TiB2 Particles. Materials, 2020, 13, 2602.	1.3	13
11	Mechanical properties and tempering resistance of an ultrafine grained Tool Steel-PSZ composite fabricated by high energy mechanical milling and spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139428.	2.6	3
12	A 3D-Printed Ultra-Low Young's Modulus β-Ti Alloy for Biomedical Applications. Materials, 2020, 13, 2792.	1.3	24
13	Properties of Laser Metal Fused AlSi10Mg Alloy Processed Using Different Heat Treatments. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2020, 165, 164-168.	0.4	3
14	Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 753, 109-121.	2.6	129
15	Strengthening mechanisms in an ultrafine grained powder metallurgical hot work tool steel produced by high energy mechanical milling and spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 349-360.	2.6	16
16	H13–partially stabilized zirconia nanocomposites fabricated by high-energy mechanical milling and selective laser melting. Materials and Design, 2018, 146, 286-297.	3.3	25
17	Fracture toughness of a hot work tool steel-TiC composite produced by mechanical milling and spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 709, 152-159.	2.6	16
18	Hot Deformation Behavior of Four Steels: A Comparative Study. Journal of Engineering Materials and Technology, Transactions of the ASME, 2018, 140, .	0.8	10

MASSIMO PELLIZZARI

#	Article	IF	CITATIONS
19	Reprint of "Thermal fatigue behaviour of WC-20Co and WC-30(CoNiCrFe) cemented carbideâ€. International Journal of Refractory Metals and Hard Materials, 2017, 62, 176-182.	1.7	2
20	Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1910-1920.	1.1	13
21	Differences of the microstructural evolution of Cu powder during continuous and interrupted mechanical milling. Powder Metallurgy, 2017, 60, 232-239.	0.9	9
22	Production and characterization of a tool steel-PSZ composite by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2017, 709, 742-751.	2.8	11
23	Tribological behaviour of Cu based materials produced by mechanical milling/alloying and spark plasma sintering. Wear, 2017, 376-377, 958-967.	1.5	19
24	Powder metallurgy opens new ways for tool steels. International Journal of Microstructure and Materials Properties, 2017, 12, 250.	0.1	1
25	Effect of the Austempering Process on the Microstructure and Mechanical Properties of 27MnCrB5-2 Steel. Archives of Metallurgy and Materials, 2017, 62, 643-651.	0.6	6
26	Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders. Materials, 2016, 9, 482.	1.3	8
27	Thermal fatigue behaviour of WC-20Co and WC-30(CoNiCrFe) cemented carbide. International Journal of Refractory Metals and Hard Materials, 2016, 60, 118-124.	1.7	21
28	Contamination during the high-energy milling of atomized copper powder and its effects on spark plasma sintering. Powder Technology, 2015, 275, 51-59.	2.1	30
29	Ïf-Phase in Lean Duplex Stainless Steel Sheets. Acta Metallurgica Sinica (English Letters), 2015, 28, 331-337.	1.5	13
30	Influence of deep cryogenic treatment on the thermal decomposition of Fe–C martensite. Journal of Materials Science, 2014, 49, 8183-8191.	1.7	42
31	Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB2 particles. Materials Characterization, 2013, 86, 69-79.	1.9	42
32	Influence of heat treatment and surface engineering on thermal fatigue behaviour of tool steel. International Heat Treatment and Surface Engineering, 2013, 7, 180-184.	0.2	3
33	Influence of particle size ratio on densification behaviour of AISI H13/AISI M3:2 powder mixture. Powder Technology, 2012, 228, 435-442.	2.1	12
34	Feasibility of laser surface treatment of pearlitic and bainitic ductile irons for hot rolls. Journal of Materials Processing Technology, 2012, 212, 989-1002.	3.1	37
35	Precipitation of secondary phases in super duplex stainless steel ZERON100 isothermally aged. Materials Science and Technology, 2011, 27, 928-932.	0.8	14
36	Effect of cryogenic treatment on the hardness and tensile behaviour of AISI 4140 steel. International Journal of Microstructure and Materials Properties, 2011, 6, 366.	0.1	11

MASSIMO PELLIZZARI

#	Article	IF	CITATIONS
37	Spark Plasma co-Sintering of hot work and high speed steel powders for fabrication of a novel tool steel with composite microstructure. Powder Technology, 2011, 214, 292-299.	2.1	24
38	Dry rolling-sliding wear of austempered cast iron. Wear, 2011, 271, 1602-1608.	1.5	26
39	Influence of laser hardening on the tribological properties of forged steel for hot rolls. Wear, 2011, 271, 2402-2411.	1.5	34
40	High temperature wear and friction behaviour of nitrided, PVD-duplex and CVD coated tool steel against 6082 Al alloy. Wear, 2011, 271, 2089-2099.	1.5	53
41	The phase stability in Cr–Ni and Cr–Mn duplex stainless steels. Journal of Materials Science, 2011, 46, 6916-6924.	1.7	39
42	Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. Journal of Materials Processing Technology, 2011, 211, 396-401.	3.1	113
43	Influence of processing parameters and particle size on the properties of hot work and high speed tool steels by Spark Plasma Sintering. Materials & Design, 2011, 32, 1796-1805.	5.1	43
44	Effect of sliding speed and contact pressure on the oxidative wear of austempered ductile iron. Wear, 2011, 270, 714-719.	1.5	57
45	Influence of deep cryogenic treatment on heat treatment of steel and Cu–Be alloy. International Heat Treatment and Surface Engineering, 2010, 4, 105-109.	0.2	10
46	Behavior at Elevated Temperature of 55NiCrMoV7 Tool Steel. Materials and Manufacturing Processes, 2009, 24, 791-795.	2.7	6
47	Hot friction and wear behaviour of high speed steel and high chromium iron for rolls. Wear, 2009, 267, 467-475.	1.5	93
48	The Application-Oriented Heat Treatment of Tool Steels. Materials and Manufacturing Processes, 2009, 24, 723-728.	2.7	9
49	Development of a Hybrid Tool Steel Produced by Spark Plasma Sintering. Materials and Manufacturing Processes, 2009, 24, 873-878.	2.7	16
50	Deep cryogenic treatment of AISI M2 high-speed steel. International Journal of Microstructure and Materials Properties, 2008, 3, 383.	0.1	18
51	Thermal fatigue properties of hot-work tool steels. International Journal of Microstructure and Materials Properties, 2008, 3, 363.	0.1	3
52	Tribological properties of surface engineered hot work tool steel for aluminium extrusion dies. Surface Engineering, 2007, 23, 165-168.	1.1	29
53	Dry sliding wear of Cu–Be alloys. Wear, 2005, 259, 506-511.	1.5	36
54	Tribological behaviour of hot rolling rolls. Wear, 2005, 259, 1281-1289.	1.5	98

MASSIMO PELLIZZARI

#	Article	IF	CITATIONS
55	Effect of matrix microhardness on thermal fatigue behaviour of spincast high speed steels for hot rolls. Materials Science and Technology, 2005, 21, 352-356.	0.8	9
56	Microstructure and impact behaviour of ASTM A105/AISI 304L friction weldments. Materials Science and Technology, 2004, 20, 634-640.	0.8	5
57	Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material. Wear, 2004, 256, 754-763.	1.5	108
58	Thermal fatigue resistance of gas and plasma nitrided 41CrAlMo7 steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 186-194.	2.6	66
59	High speed steels for hot rolls with improved impact and thermal fatigue resistance. Materials Science and Technology, 2002, 18, 1574-1580.	0.8	10
60	Damage Mechanisms in Duplex Treated Hot Work Tool Steel Under Thermal Cycling. Surface Engineering, 2002, 18, 289-298.	1.1	16
61	Friction and wear behaviour of an Al-based metal-matrix composite against automobile friction materials. International Journal of Materials and Product Technology, 2002, 17, 275.	0.1	5
62	Effect of three nitriding treatments on tribological performance of 42CrAlMo7 steel in boundary lubrication. Wear, 2002, 252, 870-879.	1.5	19
63	Thermal fatigue resistance of plasma duplex-treated tool steel. Surface and Coatings Technology, 2001, 142-144, 1109-1115.	2.2	50
64	Effect of deep cryogenic treatment on the mechanical properties of tool steels. Journal of Materials Processing Technology, 2001, 118, 350-355.	3.1	351
65	Effect of different coatings on thermal fatigue behaviour of AISI H11 hot work tool steel. International Journal of Materials and Product Technology, 2000, 15, 49.	0.1	8
66	Corrosion behaviour of a surface-treated AISI H11 hot work tool steel in molten aluminium alloy. Surface and Coatings Technology, 2000, 126, 31-38.	2.2	45
67	Plasma nitriding of Fe–Cr–Mo sintered steels. Powder Metallurgy, 1999, 42, 119-125.	0.9	16
68	Wear behaviour of diffusion and compound layers in nitrided steels. Surface Engineering, 1998, 14, 489-496.	1.1	19