Cheolmin Park

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5665490/cheolmin-park-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

170	7,495	44	82
papers	citations	h-index	g-index
191	8,428 ext. citations	11.4	5.98
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
170	Photonic Crystal Palette of Binary Block Copolymer Blends for Full Visible Structural Color Encryption (Adv. Funct. Mater. 1/2022). <i>Advanced Functional Materials</i> , 2022 , 32, 2270006	15.6	
169	Ferroelectric polymer blends for optoelectronic applications 2022, 113-151		0
168	Halide Perovskite Nanocrystal-Enabled Stabilization of Transition Metal Dichalcogenide Nanosheets (Small 6/2022). <i>Small</i> , 2022 , 18, 2270027	11	
167	Self-powered finger motion-sensing structural color display enabled by block copolymer photonic crystal. <i>Nano Energy</i> , 2022 , 92, 106688	17.1	6
166	Visualization of nonsingular defect enabling rapid control of structural color <i>Science Advances</i> , 2022 , 8, eabm5120	14.3	О
165	An Artificial Tactile Neuron Enabling Spiking Representation of Stiffness and Disease Diagnosis <i>Advanced Materials</i> , 2022 , e2201608	24	1
164	Bird-Inspired Self-Navigating Artificial Synaptic Compass. ACS Nano, 2021,	16.7	3
163	Soft Ferroelectrics Enabling High-Performance Intelligent Photo Electronics. <i>Advanced Materials</i> , 2021 , 33, e2004999	24	18
162	Polymer-Laminated TiCT MXene Electrodes for Transparent and Flexible Field-Driven Electronics. <i>ACS Nano</i> , 2021 , 15, 8940-8952	16.7	19
161	Supra-Binary Polarization in a Ferroelectric Nanowire. <i>Advanced Materials</i> , 2021 , 33, e2101981	24	1
160	Photon-assisted nanostructures of self-assembled soft materials. <i>Nano Today</i> , 2021 , 38, 101199	17.9	2
159	Thermo-Adaptive Block Copolymer Structural Color Electronics. <i>Advanced Functional Materials</i> , 2021 , 31, 2008548	15.6	19
158	Nanowatt use 8IV switching nonvolatile memory transistors with 2D MoTe2 channel and ferroelectric P(VDF-TrFE). <i>Nano Energy</i> , 2021 , 81, 105686	17.1	3
157	Tandem Interactive Sensing Display De-Convoluting Dynamic Pressure and Temperature. <i>Advanced Functional Materials</i> , 2021 , 31, 2010492	15.6	5
156	Conductor-Free Anode of Transition Metal Dichalcogenide Nanosheets Self-Assembled with Graft Polymer Li-Ion Channels. <i>Advanced Energy Materials</i> , 2021 , 11, 2003243	21.8	7
155	Halide Perovskite Nanocrystal-Enabled Stabilization of Transition Metal Dichalcogenide Nanosheets <i>Small</i> , 2021 , e2106035	11	2
154	1D hypo-crystals: A novel concept for the crystallization of stereo-irregular polymers. <i>Materials Today</i> , 2020 , 40, 26-37	21.8	6

(2019-2020)

153	Alternating-Current MXene Polymer Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2020 , 30, 2001224	15.6	15
152	Micro- and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. <i>Advanced Materials</i> , 2020 , 32, e2000597	24	31
151	Ecofriendly Catechol Lipid Bioresin for Low-Temperature Processed Electrode Patterns with Strong Durability. <i>ACS Applied Materials & Durability and Materia</i>	9.5	9
150	Controlled polymer crystal/two-dimensional material heterostructures for high-performance photoelectronic applications. <i>Nanoscale</i> , 2020 , 12, 5293-5307	7.7	5
149	Realization of Excitation Wavelength Independent Blue Emission of ZnO Quantum Dots with Intrinsic Defects. <i>ACS Photonics</i> , 2020 , 7, 723-734	6.3	11
148	Polymer-Assisted Nanoimprinting for Environment- and Phase-Stable Perovskite Nanopatterns. <i>ACS Nano</i> , 2020 , 14, 1645-1655	16.7	26
147	Structurally Stable and Highly Enhanced Luminescent Perovskite Based on Quasi-Two-Dimensional Structures upon Addition of Guanidinium Cations. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 4414-4420	3.8	10
146	Surface-Conformal Triboelectric Nanopores via Supramolecular Ternary Polymer Assembly. <i>ACS Nano</i> , 2020 , 14, 755-766	16.7	13
145	Highly luminescent biocompatible CsPbBr@SiO core-shell nanoprobes for bioimaging and drug delivery. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 10337-10345	7.3	29
144	Liquid-Metal Electrodes: Autonomous Surface Reconciliation of a Liquid-Metal Conductor Micropatterned on a Deformable Hydrogel (Adv. Mater. 37/2020). <i>Advanced Materials</i> , 2020 , 32, 207027	,3 4	O
143	Zwitterion-assisted transition metal dichalcogenide nanosheets for scalable and biocompatible inkjet printing. <i>Nano Research</i> , 2020 , 13, 2726-2734	10	11
142	Dual Functionalization of Hexagonal Boron Nitride Nanosheets Using Pyrene-Tethered Poly(4-vinylpyridine) for Stable Dispersion and Facile Device Incorporation. <i>ACS Applied Nano Materials</i> , 2020 , 3, 7633-7642	5.6	6
141	Complementary Type Ferroelectric Memory Transistor Circuits with P- and N-Channel MoTe2. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000479	6.4	7
140	3D motion tracking display enabled by magneto-interactive electroluminescence. <i>Nature Communications</i> , 2020 , 11, 6072	17.4	12
139	3D touchless multiorder reflection structural color sensing display. <i>Science Advances</i> , 2020 , 6, eabb5769	14.3	40
138	Autonomous Surface Reconciliation of a Liquid-Metal Conductor Micropatterned on a Deformable Hydrogel. <i>Advanced Materials</i> , 2020 , 32, e2002178	24	43
137	Artificially Intelligent Tactile Ferroelectric Skin. Advanced Science, 2020, 7, 2001662	13.6	21
136	Information Storage: Nonvolatile, Multicolored Photothermal Writing of Block Copolymer Structural Color (Adv. Funct. Mater. 42/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970295	15.6	

135	Multi-level operation of three-dimensionally stacked non-volatile ferroelectric polymer memory with high-performance hole-injection layer. <i>Organic Electronics</i> , 2019 , 75, 105394	3.5	8
134	Ultrastable Perovskites: Strain-Mediated Phase Stabilization: A New Strategy for Ultrastable ECsPbI3 Perovskite by Nanoconfined Growth (Small 21/2019). <i>Small</i> , 2019 , 15, 1970114	11	1
133	Shape-Adaptable 2D Titanium Carbide (MXene) Heater. ACS Nano, 2019, 13, 6835-6844	16.7	99
132	Interactive Skin Display with Epidermal Stimuli Electrode. <i>Advanced Science</i> , 2019 , 6, 1802351	13.6	40
131	Stretchable Electroluminescent Display Enabled by Graphene-Based Hybrid Electrode. <i>ACS Applied Materials & Display Enabled Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Materials & Display Enabled Based Hybrid Electrode</i> . <i>ACS Applied Based Hybrid Electrode</i>	9.5	41
130	Highly Photoluminescent and Environmentally Stable Perovskite Nanocrystals Templated in Thin Self-Assembled Block Copolymer Films. <i>Advanced Functional Materials</i> , 2019 , 29, 1808193	15.6	21
129	Flexible artificial synesthesia electronics with sound-synchronized electroluminescence. <i>Nano Energy</i> , 2019 , 59, 773-783	17.1	12
128	Strain-Mediated Phase Stabilization: A New Strategy for Ultrastable EcsPbI Perovskite by Nanoconfined Growth. <i>Small</i> , 2019 , 15, e1900219	11	48
127	Self-Healing Materials: Shape-Deformable Self-Healing Electroluminescence Displays (Advanced Optical Materials 3/2019). <i>Advanced Optical Materials</i> , 2019 , 7, 1970012	8.1	1
126	Rewritable, Printable Conducting Liquid Metal Hydrogel. <i>ACS Nano</i> , 2019 , 13, 9122-9130	16.7	52
125	Sensing and memorising liquids with polarity-interactive ferroelectric sound. <i>Nature Communications</i> , 2019 , 10, 3575	17.4	15
124	Improving the Stability of OrganicIhorganic Hybrid Perovskite Light-Emitting Diodes Using Doped Electron Transport Materials. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2019 , 216, 1900	0426	11
123	Nonvolatile, Multicolored Photothermal Writing of Block Copolymer Structural Color. <i>Advanced Functional Materials</i> , 2019 , 29, 1904055	15.6	20
122	Perovskite Nanopatterning: Highly Photoluminescent and Environmentally Stable Perovskite Nanocrystals Templated in Thin Self-Assembled Block Copolymer Films (Adv. Funct. Mater. 26/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970181	15.6	1
121	Optimization of the electron transport in quantum dot light-emitting diodes by codoping ZnO with gallium (Ga) and magnesium (Mg) <i>RSC Advances</i> , 2019 , 9, 32066-32071	3.7	2
120	Shape-Deformable Self-Healing Electroluminescence Displays. <i>Advanced Optical Materials</i> , 2019 , 7, 180	1883	11
119	Thin poly(ionic liquid) and poly(vinylidene fluoride) blend films with ferro- and piezo-electric polar Ecrystals. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 795-802	2.6	8
118	Epitaxially Grown Ferroelectric PVDF-TrFE Film on Shape-Tailored Semiconducting Rubrene Single Crystal. <i>Small</i> , 2018 , 14, e1704024	11	15

117	Block copolymer structural color strain sensor. NPG Asia Materials, 2018, 10, 328-339	10.3	60
116	Light-Emitting Diodes: All-Inorganic CsPbI3 Perovskite Phase-Stabilized by Poly(ethylene oxide) for Red-Light-Emitting Diodes (Adv. Funct. Mater. 16/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 18701	ı d 5.6	1
115	Surface functionalized nanostructures via position registered supramolecular polymer assembly. <i>Nanoscale</i> , 2018 , 10, 6333-6342	7.7	4
114	All-Inorganic CsPbI3 Perovskite Phase-Stabilized by Poly(ethylene oxide) for Red-Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2018 , 28, 1706401	15.6	127
113	Electroluminescent Pressure-Sensing Displays. ACS Applied Materials & Theorem 2018, 10, 13757-	13.766	41
112	Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. <i>Nano Energy</i> , 2018 , 48, 275-283	17.1	66
111	Triboelectric nanogenerators with transfer-printed arrays of hierarchically dewetted microdroplets. <i>Nano Energy</i> , 2018 , 51, 588-596	17.1	7
110	Flexible Vertical p-n Diode Photodetectors with Thin N-type MoSe Films Solution-Processed on Water Surfaces. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 34543-34552	9.5	17
109	Bottom-Up Synthesis of Carbon Quantum Dots With High Performance Photo- and Electroluminescence. <i>Particle and Particle Systems Characterization</i> , 2018 , 35, 1800080	3.1	14
108	Humidity-Resistant, Fabric-Based, Wearable Triboelectric Energy Harvester by Treatment of Hydrophobic Self-Assembled Monolayers. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800048	6.8	19
107	Highly flexible inverted-quantum-dot light-emitting diodes on elastic polyurethane substrates. Journal of Materials Chemistry C, 2017 , 5, 1596-1600	7.1	14
106	Spatially Pressure-Mapped Thermochromic Interactive Sensor. <i>Advanced Materials</i> , 2017 , 29, 1606120	24	60
105	One-Step All-Solution-Based Auto CoreBhell Nanosphere Active Layers in Nonvolatile ReRAM Devices. <i>Advanced Functional Materials</i> , 2017 , 27, 1604604	15.6	31
104	Organic light emitting board for dynamic interactive display. <i>Nature Communications</i> , 2017 , 8, 14964	17.4	60
103	Supramolecular-Assembled Nanoporous Film with Switchable Metal Salts for a Triboelectric Nanogenerator. <i>Advanced Functional Materials</i> , 2017 , 27, 1701367	15.6	17
102	Printable and Rewritable Full Block Copolymer Structural Color. <i>Advanced Materials</i> , 2017 , 29, 1700084	24	70
101	Flexible Nonvolatile Transistor Memory with Solution-Processed Transition Metal Dichalcogenides. Small, 2017 , 13, 1603971	11	43
100	Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity. <i>ACS Applied Materials & Applied </i>	9.5	191

99	Room-Temperature-Processable Wire-Templated Nanoelectrodes for Flexible and Transparent All-Wire Electronics. <i>ACS Nano</i> , 2017 , 11, 3681-3689	16.7	43
98	Shaping micro-clusters via inverse jamming and topographic close-packing of microbombs. <i>Nature Communications</i> , 2017 , 8, 721	17.4	7
97	Enhanced thermal conductivity of epoxy/Cu-plated carbon fiber fabric composites. <i>Macromolecular Research</i> , 2017 , 25, 559-564	1.9	12
96	Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites. <i>2D Materials</i> , 2017 , 4, 041002	5.9	11
95	Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. <i>RSC Advances</i> , 2017 , 7, 49368-49373	3.7	56
94	Solution-processed electron-only tandem polymer light-emitting diodes for broad wavelength light emission. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 110-117	7.1	15
93	Multifunctional Woven Structure Operating as Triboelectric Energy Harvester, Capacitive Tactile Sensor Array, and Piezoresistive Strain Sensor Array. <i>Sensors</i> , 2017 , 17,	3.8	34
92	Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 12158-12167	13	43
91	Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films. <i>ACS Nano</i> , 2016 , 10, 9026-35	16.7	77
90	Thin and surface adhesive ferroelectric poly(vinylidene fluoride) films with [phase-inducing amino modified porous silica nanofillers. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2016 , 54, 2401-24	1 ² 1.6	10
89	Nonvolatile Transistor Memory with Self-Assembled Semiconducting Polymer Nanodomain Floating Gates. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	28
88	Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator. <i>Scientific Reports</i> , 2016 , 6, 36977	4.9	29
87	Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. <i>Nano Letters</i> , 2016 , 16, 334-40	11.5	101
86	Non-Volatile Polymer Electroluminescence Programmable with Ferroelectric Field-Induced Charge Injection Gate. <i>Advanced Functional Materials</i> , 2016 , 26, 5391-5399	15.6	17
85	Boron Nitride Nanosheets (BNNSs) Chemically Modified by "Grafting-From" Polymerization of Poly(caprolactone) for Thermally Conductive Polymer Composites. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1921-8	4.5	39
84	Humidity controlled crystallization of thin CH3NH3PbI3 films for high performance perovskite solar cell. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 381-387	2.5	34
83	Simple, Inexpensive, and Rapid Approach to Fabricate Cross-Shaped Memristors Using an Inorganic-Nanowire-Digital-Alignment Technique and a One-Step Reduction Process. <i>Advanced Materials</i> , 2016 , 28, 527-32	24	30
82	Nanowires: Simple, Inexpensive, and Rapid Approach to Fabricate Cross-Shaped Memristors Using an Inorganic-Nanowire-Digital-Alignment Technique and a One-Step Reduction Process (Adv. Mater. 3/2016). <i>Advanced Materials</i> , 2016 , 28, 591-591	24	

(2014-2016)

81	Multilevel non-volatile data storage utilizing common current hysteresis of networked single walled carbon nanotubes. <i>Nanoscale</i> , 2016 , 8, 10273-81	7.7	10
80	A field-induced hole generation layer for high performance alternating current polymer electroluminescence and its application to extremely flexible devices. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4434-4441	7.1	12
79	Non-Volatile ReRAM Devices Based on Self-Assembled Multilayers of Modified Graphene Oxide 2D Nanosheets. <i>Small</i> , 2016 , 12, 6167-6174	11	37
78	3D-Stacked Vertical Channel Nonvolatile Polymer Memory. <i>Advanced Electronic Materials</i> , 2015 , 1, 140	0042	15
77	Molecularly Engineered Surface Triboelectric Nanogenerator by Self-Assembled Monolayers (METS). <i>Chemistry of Materials</i> , 2015 , 27, 4749-4755	9.6	77
76	High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube. <i>ACS Applied Materials & Distriction of Graphene and Leshape kinked tube.</i> ACS Applied Materials & Distriction of Graphene and Composite of Composite	9.5	123
75	Highly reliable top-gated thin-film transistor memory with semiconducting, tunneling, charge-trapping, and blocking layers all of flexible polymers. <i>ACS Applied Materials & Interfaces</i> , 2015, 7, 10957-65	9.5	60
74	Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO. <i>Scientific Reports</i> , 2015 , 5, 8968	4.9	89
73	Electrically Tunable Soft-Solid Block Copolymer Structural Color. ACS Nano, 2015, 9, 12158-67	16.7	53
72	Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. <i>Nature Communications</i> , 2015 , 6, 8063	17.4	157
71	Controlled Nanopores in Thin Films of Nonstoichiometrically Supramolecularly Assembled Graft Copolymers. <i>Chemistry - A European Journal</i> , 2015 , 21, 18375-82	4.8	6
70	High-performance alternating current electroluminescent layers solution blended with mechanically and electrically robust nonradiating polymers. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 1629-1640	2.6	3
69	Highly crystalline Fe2GeS4 nanocrystals: green synthesis and their structural and optical characterization. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2265-2270	13	23
68	Transition behavior of asymmetric polystyrene- b -poly(2-vinylpyridine) films: A stable hexagonally modulated layer structure. <i>Polymer</i> , 2015 , 60, 32-39	3.9	24
67	Efficient room-temperature near-infrared detection with solution-processed networked single wall carbon nanotube field effect transistors. <i>Small</i> , 2014 , 10, 653-9	11	7
66	Layer-by-Layer Controlled Perovskite Nanocomposite Thin Films for Piezoelectric Nanogenerators. <i>Advanced Functional Materials</i> , 2014 , 24, 6262-6269	15.6	39
66 65		15.6 15.6	39

63	Organic one-transistor-type nonvolatile memory gated with thin ionic liquid-polymer film for low voltage operation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 20179-87	9.5	35
62	Laser-induced nondestructive patterning of a thin ferroelectric polymer film with controlled crystals using Ge8Sb2Te11 alloy layer for nonvolatile memory. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 15171-8	9.5	12
61	Controlled Nanopores by Supramolecular Assembly of End-Functionalized Dendrimer and Homopolymer Blend. <i>ACS Macro Letters</i> , 2014 , 3, 1112-1116	6.6	6
60	Thermal conductivity behavior of SiCNylon 6,6 and hBNNylon 6,6 composites. <i>Research on Chemical Intermediates</i> , 2014 , 40, 33-40	2.8	13
59	Non-volatile organic memory with sub-millimetre bending radius. <i>Nature Communications</i> , 2014 , 5, 358.	3 17.4	182
58	Extremely bright full color alternating current electroluminescence of solution-blended fluorescent polymers with self-assembled block copolymer micelles. <i>ACS Nano</i> , 2013 , 7, 10809-17	16.7	44
57	High Performance Multi-Level Non-Volatile Polymer Memory with Solution-Blended Ferroelectric Polymer/High-k Insulators for Low Voltage Operation. <i>Advanced Functional Materials</i> , 2013 , 23, 5484-54	4 93 .6	68
56	Control of Current Hysteresis of Networked Single-Walled Carbon Nanotube Transistors by a Ferroelectric Polymer Gate Insulator. <i>Advanced Functional Materials</i> , 2013 , 23, 1120-1128	15.6	20
55	Thin ferroelectric poly(vinylidene fluoride-chlorotrifluoro ethylene) films for thermal history independent non-volatile polymer memory. <i>Organic Electronics</i> , 2012 , 13, 491-497	3.5	12
54	Micropatterns of Non-Circular Droplets of Nanostructured PS-b-PEO Copolymer by Solvent-Assisted Wetting on a Chemically Periodic Surface. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 431-438	2.6	6
53	Functionalized soft nanoporous materials through supramolecular assembly of end-functionalized polymer blends. <i>Chemistry - A European Journal</i> , 2012 , 18, 15662-8	4.8	10
52	High throughput modification of chemically reduced graphene oxides by a conjugated block copolymer in non-polar medium. <i>Journal of Materials Chemistry</i> , 2012 , 22, 25183		22
51	Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation. <i>Advanced Materials</i> , 2012 , 24, 5910-4	24	162
50	Dewetting-Induced Hierarchical Patterns in Block Copolymer Films. <i>Macromolecules</i> , 2012 , 45, 1492-149	98 .5	15
49	Transistors: Flexible Non-Volatile Ferroelectric Polymer Memory with Gate-Controlled Multilevel Operation (Adv. Mater. 44/2012). <i>Advanced Materials</i> , 2012 , 24, 5904-5904	24	
48	High performance AC electroluminescence from colloidal quantum dot hybrids. <i>Advanced Materials</i> , 2012 , 24, 4540-6	24	63
47	Supramolecular assembly of end-functionalized polymer mixtures confined in nanospheres. <i>ACS Nano</i> , 2011 , 5, 115-22	16.7	28
46	Non-volatile memory characteristics of epitaxially grown PVDF-TrFE thin films and their printed micropattern application. <i>Current Applied Physics</i> . 2011 , 11, e30-e34	2.6	20

(2009-2011)

45	Super-Fast Switching of Twisted Nematic Liquid Crystals on 2D Single Wall Carbon Nanotube Networks. <i>Advanced Functional Materials</i> , 2011 , 21, 3843-3850	15.6	66
44	Tailored single crystals of triisopropylsilylethynyl pentacene by selective contact evaporation printing. <i>Advanced Materials</i> , 2011 , 23, 3398-402	24	60
43	Fabrication of micropatterned ferroelectric gamma poly(vinylidene fluoride) film for non-volatile polymer memory. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3619		36
42	Intrinsic memory behavior of rough silicon nanowires and enhancement via facile Ag NPs decoration. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13256		13
41	Nonvolatile polymer memory with nanoconfinement of ferroelectric crystals. <i>Nano Letters</i> , 2011 , 11, 138-44	11.5	111
40	Compression of cross-linked poly(vinylidene fluoride-co-trifluoro ethylene) films for facile ferroelectric polarization. <i>ACS Applied Materials & mp; Interfaces</i> , 2011 , 3, 4736-43	9.5	12
39	AC field-induced polymer electroluminescence with single wall carbon nanotubes. <i>Nano Letters</i> , 2011 , 11, 966-72	11.5	62
38	Control of thin ferroelectric polymer films for non-volatile memory applications. <i>IEEE Transactions on Dielectrics and Electrical Insulation</i> , 2010 , 17, 1135-1163	2.3	107
37	Micropatterns of Hierarchical Self-Assembled Block Copolymer Droplets with Solvent-Assisted Wetting of Brush Monolayers. <i>Macromolecules</i> , 2010 , 43, 5352-5357	5.5	13
36	Self assembled block copolymer gate insulators with cylindrical nanostructures for pentacene thin film transistor. <i>Macromolecular Research</i> , 2010 , 18, 777-786	1.9	10
35	Ultrathin, Organic, Semiconductor/Polymer Blends by Scanning Corona-Discharge Coating for High-Performance Organic Thin-Film Transistors. <i>Advanced Functional Materials</i> , 2010 , 20, 2903-2910	15.6	20
34	Ultrathin Electronic Composite Sheets of Metallic/Semiconducting Carbon Nanotubes Embedded in Conjugated Block Copolymers. <i>Advanced Functional Materials</i> , 2010 , 20, 4305-4313	15.6	16
33	Ultrathin Electronic Composite Sheets of Metallic/Semiconducting Carbon Nanotubes Embedded in Conjugated Block Copolymers. <i>Advanced Functional Materials</i> , 2010 , 20, 4304-4304	15.6	
32	Non-volatile Ferroelectric Poly(vinylidene fluoride-co-trifluoroethylene) Memory Based on a Single-Crystalline Tri-isopropylsilylethynyl Pentacene Field-Effect Transistor. <i>Advanced Functional Materials</i> , 2009 , 19, 1609-1616	15.6	128
31	Printable Ferroelectric PVDF/PMMA Blend Films with Ultralow Roughness for Low Voltage Non-Volatile Polymer Memory. <i>Advanced Functional Materials</i> , 2009 , 19, 2812-2818	15.6	210
30	Ordered micropatterns by confined dewetting of an imprinted polymer thin film and their microlens application. <i>Macromolecular Research</i> , 2009 , 17, 181-186	1.9	8
29	Ordered Arrays of PS-b-P4VP Micelles by Fusion and Fission Process upon Solvent Annealing. <i>Macromolecules</i> , 2009 , 42, 6688-6697	5.5	46
28	Shear-Induced Ordering of Ferroelectric Crystals in Spin-Coated Thin Poly(vinylidene fluoride-co-trifluoroethylene) Films. <i>Macromolecules</i> , 2009 , 42, 4148-4154	5.5	44

27	Tunable Surface Plasmon Band of Position Selective Ag and Au Nanoparticles in Thin Block Copolymer Micelle Films. <i>Chemistry of Materials</i> , 2009 , 21, 4248-4255	9.6	35
26	Bimodal arrays of two types of nanoparticles by mixtures of diblock copolymer micelles. <i>Journal of Materials Chemistry</i> , 2009 , 19, 1621		7
25	Efficient photocatalytic hybrid Ag/TiO2 nanodot arrays integrated into nanopatterned block copolymer thin films. <i>New Journal of Chemistry</i> , 2009 , 33, 2431	3.6	29
24	Ordered Ferroelectric PVDFITrFE Thin Films by High Throughput Epitaxy for Nonvolatile Polymer Memory. <i>Macromolecules</i> , 2008 , 41, 8648-8654	5.5	95
23	Nanopatterning of thin polymer films by controlled dewetting on a topographic pre-pattern. <i>Soft Matter</i> , 2008 , 4, 1467-1472	3.6	49
22	Micropatterning of thin P3HT films via plasma enhanced polymer transfer printing. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3489		47
21	Molecular and Crystalline Microstructure of Ferroelectric Poly(vinylidene fluoride-co-trifluoroethylene) Ultrathin Films on Bare and Self-Assembled Monolayer-Modified Au Substrates. <i>Macromolecules</i> , 2008 , 41, 109-119	5.5	44
20	Comparative electrical bistable characteristics of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer based nonvolatile memory device architectures. <i>Applied Physics Letters</i> , 2008 , 93, 182902	3.4	26
19	Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing. <i>Applied Physics Letters</i> , 2008 , 92, 012921	3.4	122
18	Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2008 , 46, 2173-21	187 ⁶	133
17	Metal Salt-Induced Ferroelectric Crystalline Phase in Poly(vinylidene fluoride) Films. Macromolecular Rapid Communications, 2008 , 29, 1316-1321	4.8	55
16	Mixtures of Diblock Copolymer Micelles by Different Mixing Protocols. <i>Macromolecules</i> , 2007 , 40, 8323	-83338	42
15	Control of SWNT Dispersion by Block Copolymers with a Side-Chain Polarity Modifier. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 176-182	4.8	14
14	The effect of an external electric field on solid-state phase transition of (P(VDF/TrFE)(72/28). <i>Fibers and Polymers</i> , 2007 , 8, 456-462	2	11
13	Irreversible extinction of ferroelectric polarization in P(VDF-TrFE) thin films upon melting and recrystallization. <i>Applied Physics Letters</i> , 2006 , 88, 242908	3.4	94
12	Ordered Patterns of Microimprinted Bilayer Polymer Films with Controlled Dewetting and Layer Inversion. <i>Macromolecules</i> , 2006 , 39, 901-903	5.5	29
11	Amphiphilic Block Copolymer Micelles: New Dispersant for Single Wall Carbon Nanotubes. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1451-1457	4.8	87
10	Direct patterning of self assembled nano-structures of block copolymers via electron beam lithography. <i>Macromolecular Research</i> , 2005 , 13, 435-440	1.9	11

LIST OF PUBLICATIONS

9	Enabling nanotechnology with self assembled block copolymer patterns. <i>Polymer</i> , 2003 , 44, 6725-6760	3.9	1309
8	Large Area Orientation of Block Copolymer Microdomains in Thin Films via Directional Crystallization of a Solvent. <i>Macromolecules</i> , 2001 , 34, 2602-2606	5.5	88
7	Microdomain patterns from directional eutectic solidification and epitaxy. <i>Nature</i> , 2000 , 405, 433-7	50.4	333
6	Influence of an Oriented Glassy Cylindrical Microdomain Structure on the Morphology of Crystallizing Lamellae in a Semicrystalline Block Terpolymer. <i>Macromolecules</i> , 2000 , 33, 7931-7938	5.5	43
5	Metal©rganic Framework-Assisted Metal-Ion Doping in All-Inorganic Perovskite for Dual-Mode Image Sensing Display. <i>Advanced Functional Materials</i> ,2111894	15.6	0
4	Retina-Inspired Structurally Tunable Synaptic Perovskite Nanocones. <i>Advanced Functional Materials</i> ,210	15596	9
3	Photonic Crystal Palette of Binary Block Copolymer Blends for Full Visible Structural Color Encryption. <i>Advanced Functional Materials</i> ,2103697	15.6	4
2	Hierarchically Ordered Perovskites with High Photo-Electronic and Environmental Stability via Nanoimprinting Guided Block Copolymer Self-Assembly. <i>Advanced Materials Interfaces</i> ,2200082	4.6	3
1	Low-Powered E-Switching Block Copolymer Structural Color Display with Organohydrogel Humidity Controller, Advanced Materials Technologies 2200385	6.8	1