## UÄ Är Büyük

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5664884/publications.pdf Version: 2024-02-01



ΠΑΫμρ ΒΔ14νΔ14κ

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of Heat Treatment on the Microstructures and Mechanical Properties of Al–4Cu–1.5Mg Alloy.<br>International Journal of Metalcasting, 2022, 16, 1020-1033.                                                                  | 1.9 | 5         |
| 2  | Subtle nuances in personality differences between gifted children as perceived by parents and teachers. Gifted Education International, 2021, 37, 305-320.                                                                       | 1.8 | 0         |
| 3  | EFFECT OF CU CONTENT AND GROWTH VELOCITY ON THE MICROSTRUCTURE PROPERTIES OF THE DIRECTIONALLY SOLIDIFIED AL-MN-CU TERNARY ALLOYS. EJONS International Journal of Mathematic Engineering and Natural Sciences, 2021, 5, 756-764. | 0.0 | 0         |
| 4  | Directionally Solidified Al–Cu–Si–Fe Quaternary Eutectic Alloys. Physics of Metals and<br>Metallography, 2020, 121, 78-83.                                                                                                       | 1.0 | 6         |
| 5  | Effect of growth velocity on microstructure and mechanical properties of directionally solidified 7075 alloy. International Journal of Cast Metals Research, 2020, 33, 11-23.                                                    | 1.0 | 7         |
| 6  | Effect of Robotics Technology in Science Education onScientific Creativity and Attitude Development.<br>Journal of Turkish Science Education, 2020, 18, 54-72.                                                                   | 0.7 | 1         |
| 7  | Investigation of the thermo-electrical properties of A707 alloys. Thermochimica Acta, 2019, 673, 177-184.                                                                                                                        | 2.7 | 3         |
| 8  | Microstructural, mechanical, electrical, and thermal properties of the Bi-Sn-Ag ternary eutectic alloy. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 147-154.                                    | 1.0 | 3         |
| 9  | Effect of silicon content on microstructure, mechanical and electrical properties of the directionally solidified Al–based quaternary alloys. Journal of Alloys and Compounds, 2017, 694, 471-479.                               | 5.5 | 32        |
| 10 | The effects of microstructure and growth rate on microhardness, tensile strength, and electrical<br>resistivity for directionally solidified Al–Ni–Fe alloys. Journal of Alloys and Compounds, 2016, 660,<br>23-31.              | 5.5 | 44        |
| 11 | Solidification Behavior of Ge–Al Eutectic Alloy in a Drop Tube. Transactions of the Indian Institute of<br>Metals, 2016, 69, 961-970.                                                                                            | 1.5 | 5         |
| 12 | Characterization of Rapidly Solidified Nd–Al and Nd–Ag Eutectic Alloys in Drop Tube. Advanced<br>Engineering Materials, 2015, 17, 359-365.                                                                                       | 3.5 | 1         |
| 13 | Directional solidification of Zn-Al-Cu eutectic alloy by the vertical Bridgman method. Journal of<br>Mining and Metallurgy, Section B: Metallurgy, 2015, 51, 67-72.                                                              | 0.8 | 7         |
| 14 | The influence of the growth rate on the eutectic spacings, undercoolings and microhardness of<br>directional solidified bismuth–lead eutectic alloy. Current Applied Physics, 2013, 13, 587-593.                                 | 2.4 | 9         |
| 15 | Containerless solidification of Ag–Al and Ag–Cu eutectic alloys in a drop tube. Journal of Alloys and<br>Compounds, 2013, 575, 96-103.                                                                                           | 5.5 | 11        |
| 16 | Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al–Cu–Ag eutectic alloy. Current Applied Physics, 2012, 12, 7-10.                                                     | 2.4 | 25        |
| 17 | Determination of mechanical, electrical and thermal properties of the Sn―Bi―Zn ternary alloy. Journal of Non-Crystalline Solids, 2011, 357, 2876-2881.                                                                           | 3.1 | 33        |
| 18 | Microstructural characterization of unidirectional solidified eutectic Al–Si–Ni alloy. Materials<br>Characterization, 2011, 62, 844-851.                                                                                         | 4.4 | 35        |

Uğur Büyüκ

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Determination of solid–liquid interfacial energy for a solid Sn in equilibrium with a Sn–Ag–Zn<br>eutectic liquid. Current Applied Physics, 2011, 11, 1060-1066.                                                                                         | 2.4 | 9         |
| 20 | Dependence of Electrical Resistivity on Temperature and Sn Content in Pb-Sn Solders. Journal of Electronic Materials, 2011, 40, 195-200.                                                                                                                 | 2.2 | 22        |
| 21 | Measurements of Microhardness and Thermal and Electrical Properties of the Binary Zn-0.7wt.%Cu<br>Hypoperitectic Alloy. Journal of Electronic Materials, 2010, 39, 303-311.                                                                              | 2.2 | 17        |
| 22 | Investigation of microhardness and thermo-electrical properties in the Sn–Cu hypereutectic alloy.<br>Journal of Materials Science: Materials in Electronics, 2010, 21, 468-474.                                                                          | 2.2 | 13        |
| 23 | Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy. Journal of Materials Science: Materials in Electronics, 2010, 21, 608-618. | 2.2 | 15        |
| 24 | Effect of solidification parameters on the microstructure of Sn-3.7Ag-0.9Zn solder. Materials Characterization, 2010, 61, 1260-1267.                                                                                                                     | 4.4 | 21        |
| 25 | Dependency of eutectic spacings and microhardness on the temperature gradient for directionally solidified Sn–Ag–Cu lead-free solder. Materials Chemistry and Physics, 2010, 119, 442-448.                                                               | 4.0 | 36        |
| 26 | Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al–Cu alloys. Experimental Thermal and Fluid Science, 2010, 34, 1507-1516.                                                                | 2.7 | 62        |
| 27 | Investigation of the effect of solidification processing parameters on microhardness and<br>determination of thermo–physical properties in the Zn–Cu peritectic alloy. Journal of Alloys and<br>Compounds, 2010, 491, 143-148.                           | 5.5 | 15        |
| 28 | DETERMINATION OF ANISOTROPY OF CRYSTAL-MELT INTERFACIAL ENERGY FROM THE OBSERVED GRAIN<br>BOUNDARY GROOVE SHAPES AT MULTIPLE ORIENTATIONS. Surface Review and Letters, 2009, 16, 579-588.                                                                | 1.1 | 0         |
| 29 | MEASUREMENTS OF SOLID–LIQUID INTERFACIAL ENERGIES IN THE ORGANIC MONOTECTIC ALLOYS. Surface<br>Review and Letters, 2009, 16, 203-214.                                                                                                                    | 1.1 | 3         |
| 30 | Directional solidification of Al–Cu–Ag alloy. Applied Physics A: Materials Science and Processing, 2009, 95, 923-932.                                                                                                                                    | 2.3 | 59        |
| 31 | Interfacial energies of carbon tetrabromide. Current Applied Physics, 2009, 9, 359-366.                                                                                                                                                                  | 2.4 | 3         |
| 32 | Unidirectional solidification of Zn-rich Zn-Cu hypoperitectic alloy. Journal of Materials Research, 2009, 24, 3422-3431.                                                                                                                                 | 2.6 | 14        |
| 33 | Investigation of directional solidified Al–Ti alloy. Journal of Non-Crystalline Solids, 2009, 355, 1231-1239.                                                                                                                                            | 3.1 | 5         |
| 34 | The effect of growth rate on microstructure and microindentation hardness in the In–Bi–Sn ternary alloy at low melting point. Journal of Alloys and Compounds, 2009, 470, 150-156.                                                                       | 5.5 | 43        |
| 35 | Novel experimental technique to observe equilibrated grain boundary groove shapes in opaque alloys.<br>Journal of Alloys and Compounds, 2009, 476, 213-219.                                                                                              | 5.5 | 21        |
| 36 | The microstructure parameters and microhardness of directionally solidified Sn–Ag–Cu eutectic alloy. Journal of Alloys and Compounds, 2009, 485, 264-269.                                                                                                | 5.5 | 43        |

Uğur Büyüκ

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Experimental investigation of the effect of solidification processing parameters on the rod spacings in the Sn–1.2wt.% Cu alloy. Journal of Alloys and Compounds, 2009, 486, 199-206.   | 5.5 | 44        |
| 38 | Determination of interfacial energies in the Al–Ag and Sn–Ag alloys by using Bridgman type solidification apparatus. Journal of Alloys and Compounds, 2009, 488, 138-143.               | 5.5 | 22        |
| 39 | Variation of microindentation hardness with solidification and microstructure parameters in the Al based alloys. Applied Surface Science, 2008, 255, 3071-3078.                         | 6.1 | 62        |
| 40 | Investigation of liquid composition effect on Gibbs–Thomson coefficient and solid–liquid interfacial energy in SCN based binary alloys. Materials Characterization, 2008, 59, 998-1006. | 4.4 | 23        |
| 41 | Interfacial energy of solid In2Bi intermetallic phase in equilibrium with In–Bi eutectic liquid at 72°C<br>equilibrating temperature. Materials Characterization, 2008, 59, 1101-1110.  | 4.4 | 20        |
| 42 | Solid–liquid interfacial energy of dichlorobenzene. Journal of Physics Condensed Matter, 2007, 19,<br>116202.                                                                           | 1.8 | 25        |
| 43 | Measurement of solid–liquid interfacial energy in the In–Bi eutectic alloy at low melting temperature. Journal of Physics Condensed Matter, 2007, 19, 506102.                           | 1.8 | 16        |
| 44 | Interfacial energies of p-dichlorobenzene–succinonitrile alloy. Thermochimica Acta, 2007, 463, 44-52.                                                                                   | 2.7 | 11        |
| 45 | Solid–liquid interfacial energy for solid succinonitrile in equilibrium with succinonitrile<br>dichlorobenzene eutectic liquid. Thermochimica Acta, 2006, 445, 86-91.                   | 2.7 | 25        |
| 46 | Measurement of solid–liquid interfacial energy in the pyrene succinonitrile monotectic system.<br>Journal of Physics Condensed Matter, 2006, 18, 8403-8412.                             | 1.8 | 22        |
| 47 | Solid-liquid interfacial energy of pyrene. Journal of Applied Physics, 2006, 100, 123505.                                                                                               | 2.5 | 28        |
| 48 | Measurement of solid–liquid interfacial energy in succinonitrileâ^'pyrene eutectic system. Materials<br>Letters, 2005, 59, 2953-2958.                                                   | 2.6 | 27        |
| 49 | The Effect of Growth Rate on the Microstructure and Mechanical Properties of 7020 Alloys. Journal of Materials Engineering and Performance, 0, , 1.                                     | 2.5 | 1         |