
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5664341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Introducing Protein Intrinsic Disorder. Chemical Reviews, 2014, 114, 6561-6588.	47.7	628
2	Assessing protein disorder and induced folding. Proteins: Structure, Function and Bioinformatics, 2005, 62, 24-45.	2.6	388
3	The C-terminal Domain of the Measles Virus Nucleoprotein Is Intrinsically Disordered and Folds upon Binding to the C-terminal Moiety of the Phosphoprotein. Journal of Biological Chemistry, 2003, 278, 18638-18648.	3.4	260
4	The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3792-3796.	7.1	254
5	DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Research, 2017, 45, D219-D227.	14.5	242
6	A practical overview of protein disorder prediction methods. Proteins: Structure, Function and Bioinformatics, 2006, 65, 1-14.	2.6	241
7	What's in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins, 2013, 1, e24157.	1.9	226
8	Atomic resolution (1.0 Ã) crystal structure of Fusarium solani cutinase: stereochemical analysis. Journal of Molecular Biology, 1997, 268, 779-799.	4.2	211
9	Structural Disorder in Viral Proteins. Chemical Reviews, 2014, 114, 6880-6911.	47.7	181
10	Intrinsic disorder in measles virus nucleocapsids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9839-9844.	7.1	179
11	Exploring hydrophobic sites in proteins with xenon or krypton. Proteins: Structure, Function and Bioinformatics, 1998, 30, 61-73.	2.6	168
12	Cytosolic 5′-Triphosphate Ended Viral Leader Transcript of Measles Virus as Activator of the RIG I-Mediated Interferon Response. PLoS ONE, 2007, 2, e279.	2.5	159
13	Structural disorder and modular organization in Paramyxovirinae N and P. Journal of General Virology, 2003, 84, 3239-3252.	2.9	156
14	The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner. Virus Research, 2004, 99, 157-167.	2.2	156
15	Crystal Structure of the Measles Virus Phosphoprotein Domain Responsible for the Induced Folding of the C-terminal Domain of the Nucleoprotein. Journal of Biological Chemistry, 2003, 278, 44567-44573.	3.4	143
16	The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded. Protein Science, 2005, 14, 1975-1992.	7.6	139
17	Cloning and analysis of Candida cylindracea lipase sequences. Gene, 1993, 124, 45-55.	2.2	131
18	Rules Governing Selective Protein Carbonylation. PLoS ONE, 2009, 4, e7269.	2.5	123

#	Article	IF	CITATIONS
19	DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Research, 2022, 50, D480-D487.	14.5	117
20	Simultaneous quantification of protein order and disorder. Nature Chemical Biology, 2017, 13, 339-342.	8.0	113
21	Liquid–Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus–Host Interactions. International Journal of Molecular Sciences, 2020, 21, 9045.	4.1	110
22	Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichiaâ€∫pastoris. FEBS Journal, 2000, 267, 1619-1625.	0.2	105
23	Structure-activity of cutinase, a small lipolytic enzyme. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1441, 185-196.	2.4	104
24	Modular Organization of Rabies Virus Phosphoprotein. Journal of Molecular Biology, 2009, 388, 978-996.	4.2	104
25	Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3743-52.	7.1	102
26	Mapping αâ€helical induced folding within the intrinsically disordered Câ€terminal domain of the measles virus nucleoprotein by siteâ€directed spinâ€labeling EPR spectroscopy. Proteins: Structure, Function and Bioinformatics, 2008, 73, 973-988.	2.6	101
27	Assessing Induced Folding of an Intrinsically Disordered Protein by Site-Directed Spin-Labeling Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 20596-20608.	2.6	99
28	Variability within the Candida rugosa Upases family. Protein Engineering, Design and Selection, 1994, 7, 531-535.	2.1	97
29	The N-Terminal Domain of the Phosphoprotein of Morbilliviruses Belongs to the Natively Unfolded Class of Proteins. Virology, 2002, 296, 251-262.	2.4	95
30	PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Research, 2021, 49, D404-D411.	14.5	95
31	Contribution of Cutinase Serine 42 Side Chain to the Stabilization of the Oxyanion Transition Stateâ€,‡. Biochemistry, 1996, 35, 398-410.	2.5	94
32	Viral RNA-polymerases — a predicted 2′-O-ribose methyltransferase domain shared by all Mononegavirales. Trends in Biochemical Sciences, 2002, 27, 222-224.	7.5	92
33	Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus. Virology, 2005, 337, 162-174.	2.4	90
34	MeDor: a metaserver for predicting protein disorder. BMC Genomics, 2008, 9, S25.	2.8	88
35	Structural disorder within the replicative complex of measles virus: Functional implications. Virology, 2006, 344, 94-110.	2.4	87
36	First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 719-729.	2.4	87

#	Article	IF	CITATIONS
37	How disordered is my protein and what is its disorder for? A guide through the "dark side―of the protein universe. Intrinsically Disordered Proteins, 2016, 4, e1259708.	1.9	87
38	Measles Virus (MV) Nucleoprotein Binds to a Novel Cell Surface Receptor Distinct from FcγRII via Its C-Terminal Domain: Role in MV-Induced Immunosuppression. Journal of Virology, 2003, 77, 11332-11346.	3.4	81
39	Solution structure of the Câ€ŧerminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered Câ€ŧerminal domain of the nucleoprotein. Journal of Molecular Recognition, 2010, 23, 435-447.	2.1	81
40	Intrinsic disorder in Viral Proteins Genome-Linked: experimental and predictive analyses. Virology Journal, 2009, 6, 23.	3.4	80
41	Substitution of Two Residues in the Measles Virus Nucleoprotein Results in an Impaired Self-Association. Virology, 2002, 302, 420-432.	2.4	78
42	Structural Disorder within Henipavirus Nucleoprotein and Phosphoprotein: From Predictions to Experimental Assessment. PLoS ONE, 2010, 5, e11684.	2.5	78
43	Cloning and nucleotide sequences of two lipase genes from Candida cylindracea. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1131, 227-232.	2.4	77
44	Crystal structure of cutinase covalently inhibited by a triglyceride analogue. Protein Science, 1997, 6, 275-286.	7.6	77
45	Predicting Protein Disorder and Induced Folding: From Theoretical Principles to Practical Applications. Current Protein and Peptide Science, 2007, 8, 135-149.	1.4	69
46	Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. Nature Nanotechnology, 2021, 16, 181-189.	31.5	69
47	Atomic Resolution Description of the Interaction between the Nucleoprotein and Phosphoprotein of Hendra Virus. PLoS Pathogens, 2013, 9, e1003631.	4.7	68
48	Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL–NR and NCORE–FcγRIIB1 interactions, respectively. Journal of General Virology, 2005, 86, 1771-1784.	2.9	65
49	Structural analysis of the human respiratory syncytial virus phosphoprotein: characterization of an α-helical domain involved in oligomerization. Journal of General Virology, 2006, 87, 159-169.	2.9	65
50	Characterization of the Interactions between the Nucleoprotein and the Phosphoprotein of Henipavirus. Journal of Biological Chemistry, 2011, 286, 13583-13602.	3.4	65
51	Messages from ultrahigh resolution crystal structures. Current Opinion in Structural Biology, 1998, 8, 730-737.	5.7	63
52	Demonstration of a Folding after Binding Mechanism in the Recognition between the Measles Virus N _{TAIL} and X Domains. ACS Chemical Biology, 2015, 10, 795-802.	3.4	63
53	Structural disorder within paramyxovirus nucleoproteins and phosphoproteins. Molecular BioSystems, 2012, 8, 69-81.	2.9	62
54	Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. International Journal of Molecular Sciences, 2020, 21, 6208.	4.1	61

#	Article	IF	CITATIONS
55	Ebola Virus VP30 Is an RNA Binding Protein. Journal of Virology, 2007, 81, 8967-8976.	3.4	60
56	Conformational Analysis of the Partially Disordered Measles Virus NTAIL-XD Complex by SDSL EPR Spectroscopy. Biophysical Journal, 2010, 98, 1055-1064.	0.5	59
57	Nucleocapsid Structure and Function. Current Topics in Microbiology and Immunology, 2009, 329, 103-128.	1.1	58
58	Dynamics ofFusarium solani cutinase investigated through structural comparison among different crystal forms of its variants. Proteins: Structure, Function and Bioinformatics, 1996, 26, 442-458.	2.6	57
59	Acyl glycerol hydrolases: inhibitors, interface and catalysis. Current Opinion in Structural Biology, 1996, 6, 449-455.	5.7	53
60	An Integrated System to Study Multiply Substituted Human Immunodeficiency Virus Type 1 Reverse Transcriptase. Analytical Biochemistry, 2001, 292, 139-147.	2.4	52
61	High affinity binding between Hsp70 and the Câ€terminal domain of the measles virus nucleoprotein requires an Hsp40 coâ€chaperone. Journal of Molecular Recognition, 2010, 23, 301-315.	2.1	48
62	Probing Structural Transitions in the Intrinsically Disordered C-Terminal Domain of the Measles Virus Nucleoprotein by Vibrational Spectroscopy ofÂCyanylated Cysteines. Biophysical Journal, 2010, 99, 1676-1683.	0.5	47
63	Structural disorder and induced folding within two cereal, ABA stress and ripening (ASR) proteins. Scientific Reports, 2017, 7, 15544.	3.3	47
64	VaZyMolO: a tool to define and classify modularity in viral proteins. Journal of General Virology, 2005, 86, 743-749.	2.9	45
65	Molecular Basis for Structural Heterogeneity of an Intrinsically Disordered Protein Bound to a Partner by Combined ESI-IM-MS and Modeling. Journal of the American Society for Mass Spectrometry, 2015, 26, 472-481.	2.8	45
66	Sequence of Events in Measles Virus Replication: Role of Phosphoprotein-Nucleocapsid Interactions. Journal of Virology, 2014, 88, 10851-10863.	3.4	44
67	Essential Amino Acids of the Hantaan Virus N Protein in Its Interaction with RNA. Journal of Virology, 2005, 79, 10032-10039.	3.4	43
68	Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies. Molecular BioSystems, 2012, 8, 392-410.	2.9	43
69	hsp70 and a Novel Axis of Type I Interferon-Dependent Antiviral Immunity in the Measles Virus-Infected Brain. Journal of Virology, 2013, 87, 998-1009.	3.4	43
70	Modulation of Re-initiation of Measles Virus Transcription at Intergenic Regions by PXD to NTAIL Binding Strength. PLoS Pathogens, 2016, 12, e1006058.	4.7	43
71	Fuzzy regions in an intrinsically disordered protein impair protein–protein interactions. FEBS Journal, 2016, 283, 576-594.	4.7	43
72	Interaction between the Câ€ŧerminal domains of N and P proteins of measles virus investigated by NMR. FEBS Letters, 2009, 583, 1084-1089.	2.8	42

#	Article	IF	CITATIONS
73	Recombinant pheromone binding protein 1 from Mamestra brassicae (MbraPBP1) . Functional and structural characterization. FEBS Journal, 1999, 264, 707-716.	0.2	41
74	Exploring hydrophobic sites in proteins with xenon or krypton. Proteins: Structure, Function and Bioinformatics, 1998, 30, 61-73.	2.6	41
75	How Robust Is the Mechanism of Folding-Upon-Binding for an Intrinsically Disordered Protein?. Biophysical Journal, 2018, 114, 1889-1894.	0.5	39
76	Assessing induced folding within the intrinsically disordered C-terminal domain of the <i>Henipavirus</i> nucleoproteins by site-directed spin labeling EPR spectroscopy. Journal of Biomolecular Structure and Dynamics, 2013, 31, 453-471.	3.5	38
77	An arsenal of methods for the experimental characterization of intrinsically disordered proteins – How to choose and combine them?. Archives of Biochemistry and Biophysics, 2019, 676, 108055.	3.0	37
78	Probing structural transitions in both structured and disordered proteins using siteâ€directed spinâ€labeling EPR spectroscopy. Journal of Peptide Science, 2011, 17, 315-328.	1.4	36
79	Plasticity in Structural and Functional Interactions between the Phosphoprotein and Nucleoprotein of Measles Virus. Journal of Biological Chemistry, 2012, 287, 11951-11967.	3.4	36
80	Molecular cloning and bacterial expression of a general odorant-binding protein from the cabbage armyworm Mamestra brassicae. FEBS Journal, 1998, 258, 768-774.	0.2	34
81	Packing forces in nine crystal forms of cutinase. Proteins: Structure, Function and Bioinformatics, 1998, 31, 320-333.	2.6	34
82	Structural genomics of the SARS coronavirus: cloning, expression, crystallization and preliminary crystallographic study of the Nsp9 protein. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1628-1631.	2.5	34
83	Extracting structural information from charge-state distributions of intrinsically disordered proteins by non-denaturing electrospray-ionization mass spectrometry. Intrinsically Disordered Proteins, 2013, 1, e25068.	1.9	33
84	Structural Disorder within the Measles Virus Nucleoprotein and Phosphoprotein. Protein and Peptide Letters, 2010, 17, 961-978.	0.9	32
85	Dynamics of the Intrinsically Disordered Câ€Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy. ChemBioChem, 2015, 16, 268-276.	2.6	31
86	Regulation of measles virus gene expression by P protein coiled-coil properties. Science Advances, 2019, 5, eaaw3702.	10.3	31
87	How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cellular and Molecular Life Sciences, 2017, 74, 3091-3118.	5.4	30
88	The Valine-to-Threonine 75 Substitution in Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Its Relation with Stavudine Resistance. Journal of Biological Chemistry, 2001, 276, 13965-13974.	3.4	29
89	Coiled-coil deformations in crystal structures: the <i>measles virus</i> phosphoprotein multimerization domain as an illustrative example. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1589-1603.	2.5	29
90	Analyzing the Folding and Binding Steps of an Intrinsically Disordered Protein by Protein Engineering. Biochemistry, 2017, 56, 3780-3786.	2.5	28

#	Article	IF	CITATIONS
91	Dissecting Partner Recognition by an Intrinsically Disordered Protein Using Descriptive Random Mutagenesis. Journal of Molecular Biology, 2013, 425, 3495-3509.	4.2	25
92	Bioinformatic Analysis of Lytic Polysaccharide Monooxygenases Reveals the Pan-Families Occurrence of Intrinsically Disordered C-Terminal Extensions. Biomolecules, 2021, 11, 1632.	4.0	25
93	The interaction between the measles virus nucleoprotein and the Interferon Regulator Factor 3 relies on a specific cellular environment. Virology Journal, 2009, 6, 59.	3.4	23
94	Biochemical and structural studies of the oligomerization domain of the Nipah virus phosphoprotein: Evidence for an elongated coiled-coil homotrimer. Virology, 2013, 446, 162-172.	2.4	23
95	The Measles Virus NTAIL-XD Complex: An Illustrative Example of Fuzziness. Advances in Experimental Medicine and Biology, 2012, 725, 126-141.	1.6	20
96	Identification of a Region in the Common Amino-terminal Domain of Hendra Virus P, V, and W Proteins Responsible for Phase Transition and Amyloid Formation. Biomolecules, 2021, 11, 1324.	4.0	20
97	SPINE bioinformatics and data-management aspects of high-throughput structural biology. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1184-1195.	2.5	19
98	Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment. International Journal of Molecular Sciences, 2015, 16, 15688-15726.	4.1	19
99	Structural disorder within paramyxoviral nucleoproteins. FEBS Letters, 2015, 589, 2649-2659.	2.8	19
100	Probing Conformational Changes and Interfacial Recognition Site of Lipases With Surfactants and Inhibitors. Methods in Enzymology, 2017, 583, 279-307.	1.0	19
101	Conformational Disorder. Methods in Molecular Biology, 2010, 609, 307-325.	0.9	19
102	How disorder influences order and vice versa – mutual effects in fusion proteins containing an intrinsically disordered and a globular protein. FEBS Journal, 2010, 277, 4438-4451.	4.7	18
103	Identification and Structural Characterization of an Intermediate in the Folding of the Measles Virus X Domain. Journal of Biological Chemistry, 2016, 291, 10886-10892.	3.4	18
104	The Henipavirus V protein is a prevalently unfolded protein with a zinc-finger domain involved in binding to DDB1. Molecular BioSystems, 2017, 13, 2254-2267.	2.9	18
105	Partner-Mediated Polymorphism of an Intrinsically Disordered Protein. Journal of Molecular Biology, 2018, 430, 2493-2507.	4.2	18
106	Understanding Intramolecular Crosstalk in an Intrinsically Disordered Protein. ACS Chemical Biology, 2019, 14, 337-341.	3.4	18
107	Modulation of Measles Virus NTAIL Interactions through Fuzziness and Sequence Features of Disordered Binding Sites. Biomolecules, 2019, 9, 8.	4.0	17
108	Transcription et réplication des MononegaviralesÂ: une machine moléculaire originale. Virologie, 2012, 16, 225-257.	0.1	17

#	Article	IF	CITATIONS
109	Conformational response to charge clustering in synthetic intrinsically disordered proteins. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2204-2214.	2.4	16
110	Comprehensive Intrinsic Disorder Analysis of 6108 Viral Proteomes: From the Extent of Intrinsic Disorder Penetrance to Functional Annotation of Disordered Viral Proteins. Journal of Proteome Research, 2021, 20, 2704-2713.	3.7	16
111	Interaction between the Câ€terminal domains of measles virus nucleoprotein and phosphoprotein: A tight complex implying one binding site. Protein Science, 2012, 21, 1577-1585.	7.6	15
112	Insights into the Hendra virus N TAIL –XD complex: Evidence for a parallel organization of the helical MoRE at the XD surface stabilized by a combination of hydrophobic and polar interactions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1038-1053.	2.3	15
113	One-step generation of error-prone PCR libraries using Gateway® technology. Microbial Cell Factories, 2012, 11, 14.	4.0	13
114	Monitoring Structural Transitions in IDPs by Site-Directed Spin Labeling EPR Spectroscopy. Methods in Molecular Biology, 2012, 895, 361-386.	0.9	13
115	Diversification of EPR signatures in site directed spin labeling using a β-phosphorylated nitroxide. Physical Chemistry Chemical Physics, 2014, 16, 4202.	2.8	13
116	Ensemble description of the intrinsically disordered N-terminal domain of the Nipah virus P/V protein from combined NMR and SAXS. Scientific Reports, 2020, 10, 19574.	3.3	13
117	Insights into the coiled-coil organization of the Hendra virus phosphoprotein from combined biochemical and SAXS studies. Virology, 2015, 477, 42-55.	2.4	12
118	Editorial [Hot topic: Structural Disorder in Viral Proteins (Guest Editor: Sonia Longhi)]. Protein and Peptide Letters, 2010, 17, 930-931.	0.9	11
119	Distribution of Charged Residues Affects the Average Size and Shape of Intrinsically Disordered Proteins. Biomolecules, 2022, 12, 561.	4.0	11
120	Homology-derived three-dimensional structure prediction of Candida cylindracea lipase. Lipids and Lipid Metabolism, 1992, 1165, 129-133.	2.6	10
121	Dividing To Unveil Protein Microheterogeneities: Traveling Wave Ion Mobility Study. Analytical Chemistry, 2011, 83, 7306-7315.	6.5	10
122	Order and Disorder in the Replicative Complex of Paramyxoviruses. Advances in Experimental Medicine and Biology, 2015, 870, 351-381.	1.6	10
123	Predicting Conformational Disorder. Methods in Molecular Biology, 2016, 1415, 265-299.	0.9	10
124	InSiDDe: A Server for Designing Artificial Disordered Proteins. International Journal of Molecular Sciences, 2018, 19, 91.	4.1	10
125	Folding Mechanism of the SH3 Domain from Grb2. Journal of Physical Chemistry B, 2018, 122, 11166-11173.	2.6	9
126	Binding induced folding: Lessons from the kinetics of interaction between NTAIL and XD. Archives of Biochemistry and Biophysics, 2019, 671, 255-261.	3.0	9

#	Article	IF	CITATIONS
127	Structural and Functional Characterization of the ABA-Water Deficit Stress Domain from Wheat and Barley: An Intrinsically Disordered Domain behind the Versatile Functions of the Plant Abscissic Acid, Stress and Ripening Protein Family. International Journal of Molecular Sciences, 2021, 22, 2314.	4.1	9
128	Insights into the evolutionary forces that shape the codon usage in the viral genome segments encoding intrinsically disordered protein regions. Briefings in Bioinformatics, 2021, 22, .	6.5	9
129	Accuracy of Structural Information Obtained at the European Synchrotron Radiation Facility from Very Rapid Laue Data Collection on Macromolecules. Journal of Applied Crystallography, 1997, 30, 153-163.	4.5	8
130	Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to alkyl chains: a new class of peptide amphiphiles. Molecular BioSystems, 2013, 9, 1401.	2.9	8
131	Elevated antibody reactivity to measles virus NCORE protein among patients with multiple sclerosis and their healthy siblings with intrathecal oligoclonal immunoglobulin G production. Journal of Clinical Virology, 2014, 61, 107-112.	3.1	8
132	Interfacial Properties of NTAIL, an Intrinsically Disordered Protein. Biophysical Journal, 2017, 113, 2723-2735.	0.5	8
133	Experimental Characterization of Fuzzy Protein Assemblies: Interactions of Paramyxoviral NTAIL Domains With Their Functional Partners. Methods in Enzymology, 2018, 611, 137-192.	1.0	8
134	Structural Disorder within the Measles Virus Nucleoprotein and Phosphoprotein: Functional Implications for Transcription and Replication. , 2011, , 95-125.		6
135	The Folding Pathway of the KIX Domain. ACS Chemical Biology, 2017, 12, 1683-1690.	3.4	6
136	Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins. International Journal of Molecular Sciences, 2022, 23, 923.	4.1	6
137	Protein Engineering. Methods in Molecular Biology, 2007, 363, 59-90.	0.9	4
138	Mutual effects of disorder and order in fusion proteins between intrinsically disordered domains and fluorescent proteins. Molecular BioSystems, 2012, 8, 105-113.	2.9	4
139	Probing the dynamic properties of two sites simultaneously in a protein–protein interaction process: a SDSL-EPR study. Physical Chemistry Chemical Physics, 2019, 21, 22584-22588.	2.8	4
140	Packing forces in nine crystal forms of cutinase. Proteins: Structure, Function and Bioinformatics, 1998, 31, 320-33.	2.6	4
141	Predicting Protein Conformational Disorder and Disordered Binding Sites. Methods in Molecular Biology, 2022, 2449, 95-147.	0.9	4
142	Monitoring Structural Transitions in IDPs by Vibrational Spectroscopy of Cyanylated Cysteine. Methods in Molecular Biology, 2012, 895, 245-270.	0.9	3
143	Extracellular HSP70, Neuroinflammation and Protection Against Viral Virulence. Heat Shock Proteins, 2019, , 23-55.	0.2	3
144	Reply to Jensen and Blackledge: Dual quantifications of intrinsically disordered proteins by NMR ensembles and molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1559.	7.1	2

#	Article	IF	CITATIONS
145	Exploration of nucleoprotein α-MoRE and XD interactions of Nipah and Hendra viruses. Journal of Molecular Modeling, 2018, 24, 113.	1.8	2
146	Structural Disorder Within Henipavirus Nucleoprotein and Phosphoprotein. Biophysical Journal, 2010, 98, 256a.	0.5	1
147	Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants. Proteins: Structure, Function and Bioinformatics, 1996, 26, 442-458.	2.6	1
148	Predicting substitutions to modulate disorder and stability in coiled-coils. BMC Bioinformatics, 2020, 21, 573.	2.6	0