
Laura E Briand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Simple Molecular Model to Study the Substrate Diffusion into the Active Site of a Lipase-Catalyzed Esterification of Ibuprofen and Ketoprofen with Glycerol. Topics in Catalysis, 2022, 65, 944-956.	1.3	4
2	Insights in the biocatalyzed hydrolysis, esterification and transesterification of waste cooking oil with a vegetable lipase. Catalysis Today, 2021, 372, 211-219.	2.2	18
3	Catalytic and molecular insights of the esterification of ibuprofen and ketoprofen with glycerol. Molecular Catalysis, 2021, 513, 111811.	1.0	9
4	Tailored BrÃ,nsted and Lewis surface acid sites of the phosphotungstic Wells Dawson heteropoly-acid. Applied Surface Science, 2019, 495, 143565.	3.1	15
5	Influence of Water on Enzymatic Esterification of Racemic Ketoprofen with Ethanol in a Solvent-Free System. Topics in Catalysis, 2019, 62, 968-976.	1.3	7
6	Novozym 435: the "perfect―lipase immobilized biocatalyst?. Catalysis Science and Technology, 2019, 9, 2380-2420.	2.1	393
7	Influence of the nature of the support on the catalytic performance of CALB: experimental and theoretical evidence. Catalysis Science and Technology, 2018, 8, 3513-3526.	2.1	17
8	Molecular recognition of an acyl–enzyme intermediate on the lipase B from Candida antarctica. Catalysis Science and Technology, 2017, 7, 1953-1964.	2.1	12
9	Lipase B of <i>Candida antarctica</i> coâ€adsorbed with polyols onto TiO ₂ nanoparticles for improved biocatalytic performance. Journal of Chemical Technology and Biotechnology, 2017, 92, 2870-2880.	1.6	3
10	Screening of Novel Materials for Biodiesel Production Through the Esterification of Oleic Acid. Catalysis Letters, 2016, 146, 2341-2347.	1.4	6
11	Enzymatic kinetic resolution of racemic ibuprofen: past, present and future. Critical Reviews in Biotechnology, 2016, 36, 891-903.	5.1	34
12	Molecular structure and thermal stability of the oxide-supported phosphotungstic Wells–Dawson heteropolyacid. Physical Chemistry Chemical Physics, 2015, 17, 8097-8105.	1.3	5
13	Towards a green enantiomeric esterification of R/S-ketoprofen: A theoretical and experimental investigation. Journal of Molecular Catalysis B: Enzymatic, 2015, 118, 52-61.	1.8	18
14	Effect of Co-solvents in the Enantioselective Esterification of (R/S)- ibuprofen with Ethanol. Current Catalysis, 2014, 3, 131-138.	0.5	8
15	Analytical characterization and purification of a commercial extract of enzymes: A case study. Colloids and Surfaces B: Biointerfaces, 2014, 121, 11-20.	2.5	14
16	Investigation of the stability of Novozym® 435 in the production of biodiesel. Catalysis Today, 2013, 213, 73-80.	2.2	27
17	Esterification of R/S-ketoprofen with 2-propanol as reactant and solvent catalyzed by Novozym® 435 at selected conditions. Journal of Molecular Catalysis B: Enzymatic, 2012, 83, 108-119.	1.8	20
18	Investigation of the structure and proteolytic activity of papain in aqueous miscible organic media. Process Biochemistry, 2012, 47, 47-56.	1.8	24

Laura E Briand

#	Article	IF	CITATIONS
19	Acylating Capacity of the Phosphotungstic Wellsâ~'Dawson Heteropoly Acid: Intermediate Reactive Species. Journal of Physical Chemistry C, 2011, 115, 700-709.	1.5	15
20	Investigation of the causes of deactivation–degradation of the commercial biocatalyst Novozym® 435 in ethanol and ethanol–aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2011, 71, 95-107.	1.8	61
21	ATR-FTIR Study of the Decomposition of Acetic Anhydride on Fosfotungstic Wells–Dawson Heteropoly Acid Using Concentration-Modulation Excitation Spectroscopy. Topics in Catalysis, 2011, 54, 229-235.	1.3	15
22	Deactivation of Novozym® 435 during the esterification of ibuprofen with ethanol: evidences of the detrimental effect of the alcohol. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 17.	0.8	5
23	Enantioselective esterification of ibuprofen with ethanol as reactant and solvent catalyzed by immobilized lipase: experimental and molecular modeling aspects. Journal of Chemical Technology and Biotechnology, 2009, 84, 1461-1473.	1.6	56
24	Environmentally friendly synthesis of Wells–Dawson heteropolyacids. Catalysis Today, 2008, 133-135, 192-199.	2.2	20
25	In situ quantification of the active acid sites of H6P2W18O62·nH2O heteropoly-acid through chemisorption and temperature programmed surface reaction of isopropanol. Applied Catalysis A: General, 2004, 264, 151-159.	2.2	29
26	Quantitative determination of the number of surface active sites and the turnover frequency for methanol oxidation over bulk metal vanadates. Catalysis Today, 2003, 78, 257-268.	2.2	100
27	The state of the art on Wells–Dawson heteropoly-compounds. Applied Catalysis A: General, 2003, 256, 37-50.	2.2	183
28	Stability of phospho-molybdic Wells–Dawson-type ion P2Mo18O626â^' in organic media. Materials Letters, 2003, 57, 3964-3969.	1.3	18
29	Stability of the phospho-molybdic Dawson-type ion P2Mo18O626– in aqueous media. Journal of Materials Chemistry, 2002, 12, 299-304.	6.7	38
30	Quantification of Active Sites for the Determination of Methanol Oxidation Turn-over Frequencies Using Methanol Chemisorption and in Situ Infrared Techniques. 1. Supported Metal Oxide Catalysts. Langmuir, 2001, 17, 6164-6174.	1.6	154
31	Quantification of Active Sites for the Determination of Methanol Oxidation Turn-over Frequencies Using Methanol Chemisorption and in Situ Infrared Techniques. 2. Bulk Metal Oxide Catalysts. Langmuir, 2001, 17, 6175-6184.	1.6	77
32	Quantitative Determination of the Number of Surface Active Sites and the Turnover Frequencies for Methanol Oxidation over Metal Oxide Catalysts: Application to Bulk Metal Molybdates and Pure Metal Oxide Catalysts. Journal of Catalysis, 2001, 202, 268-278.	3.1	72
33	Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts. Catalysis Today, 2000, 62, 219-229.	2.2	95
34	Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts. Studies in Surface Science and Catalysis, 2000, 130, 305-310.	1.5	4
35	Heteropolyacid-based catalysis. Dawson acid for MTBE synthesis in gas phase. Applied Catalysis A: General, 1998, 172, 265-272.	2.2	110