
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663925/publications.pdf Version: 2024-02-01

Μαιανισμα Ομιστα

#	Article	IF	CITATIONS
1	Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition. Macromolecules, 2005, 38, 9742-9748.	2.2	690
2	FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab on A Chip, 2008, 8, 2146.	3.1	616
3	Measuring Densities of Solids and Liquids Using Magnetic Levitation: Fundamentals. Journal of the American Chemical Society, 2009, 131, 10049-10058.	6.6	181
4	Initiated Chemical Vapor Deposition of Poly(1H,1H,2H,2H-perfluorodecyl Acrylate) Thin Films. Langmuir, 2006, 22, 10047-10052.	1.6	144
5	Egg beater as centrifuge: isolating human blood plasma from whole blood in resource-poor settings. Lab on A Chip, 2008, 8, 2032.	3.1	126
6	Two-Phase Microfluidic Droplet Flows of Ionic Liquids for the Synthesis of Gold and Silver Nanoparticles. ACS Applied Materials & Interfaces, 2012, 4, 3077-3083.	4.0	121
7	Initiated Chemical Vapor Deposition (iCVD) of Conformal Polymeric Nanocoatings for the Surface Modification of High-Aspect-Ratio Pores. Chemistry of Materials, 2008, 20, 1646-1651.	3.2	101
8	Flow invariant droplet formation for stable parallel microreactors. Nature Communications, 2016, 7, 10780.	5.8	90
9	Hybrid microcavity humidity sensor. Applied Physics Letters, 2013, 102, .	1.5	87
10	Three-dimensional patterning of porous materials using vapor phase polymerization. Soft Matter, 2011, 7, 2428.	1.2	84
11	Large-scale initiated chemical vapor deposition of poly(glycidyl methacrylate) thin films. Thin Solid Films, 2006, 515, 1579-1584.	0.8	82
12	Initiated chemical vapor deposition (iCVD) of polymeric nanocoatings. Surface and Coatings Technology, 2007, 201, 9400-9405.	2.2	69
13	Vapor Phase Deposition of Functional Polymers onto Paper-Based Microfluidic Devices for Advanced Unit Operations. Analytical Chemistry, 2012, 84, 10129-10135.	3.2	59
14	Patterned Fluoropolymer Barriers for Containment of Organic Solvents within Paper-Based Microfluidic Devices. ACS Applied Materials & Interfaces, 2013, 5, 12701-12707.	4.0	56
15	Hydrophobicity versus Pore Size: Polymer Coatings to Improve Membrane Wetting Resistance for Membrane Distillation. ACS Applied Polymer Materials, 2020, 2, 1256-1267.	2.0	55
16	Encapsulation of Ionic Liquids within Polymer Shells via Vapor Phase Deposition. Langmuir, 2012, 28, 10276-10280.	1.6	49
17	Heterogeneous Films of Ionotropic Hydrogels Fabricated from Delivery Templates of Patterned Paper. ACS Applied Materials & Interfaces, 2009, 1, 1807-1812.	4.0	43
18	Patterning precipitates of reactions in paper. Journal of Materials Chemistry, 2010, 20, 5117.	6.7	41

#	Article	IF	CITATIONS
19	Effect of Surface Tension, Viscosity, and Process Conditions on Polymer Morphology Deposited at the Liquid–Vapor Interface. Langmuir, 2013, 29, 11640-11645.	1.6	36
20	Shaped Films of Ionotropic Hydrogels Fabricated Using Templates of Patterned Paper. Advanced Materials, 2009, 21, 445-450.	11.1	34
21	Vapor deposition of cross-linked fluoropolymer barrier coatings onto pre-assembled microfluidic devices. Lab on A Chip, 2011, 11, 3049.	3.1	34
22	Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition. Beilstein Journal of Nanotechnology, 2017, 8, 1629-1636.	1.5	32
23	Roll-to-Roll Surface Modification of Cellulose Paper via Initiated Chemical Vapor Deposition. Industrial & Engineering Chemistry Research, 2018, 57, 11675-11680.	1.8	31
24	Fluoropolymer surface coatings to control droplets in microfluidic devices. Lab on A Chip, 2014, 14, 1834-1841.	3.1	30
25	Ultrathin Free-Standing Polymer Films Deposited onto Patterned Ionic Liquids and Silicone Oil. Macromolecules, 2012, 45, 165-170.	2.2	29
26	Directed Deposition of Functional Polymers onto Porous Substrates Using Metal Salt Inhibitors. Langmuir, 2011, 27, 10634-10641.	1.6	28
27	Patterned paper as a template for the delivery of reactants in the fabrication of planar materials. Soft Matter, 2010, 6, 4303.	1.2	27
28	Self-Assembly of Pillars Modified with Vapor Deposited Polymer Coatings. ACS Applied Materials & Interfaces, 2011, 3, 4201-4205.	4.0	27
29	Simultaneous Polymerization and Solid Monomer Deposition for the Fabrication of Polymer Membranes with Dual-Scale Porosity. Macromolecules, 2013, 46, 2976-2983.	2.2	27
30	Microstructured Films Formed on Liquid Substrates via Initiated Chemical Vapor Deposition of Cross-Linked Polymers. Langmuir, 2015, 31, 7999-8005.	1.6	27
31	Initiated Chemical Vapor Deposition of Poly(furfuryl methacrylate). Macromolecular Rapid Communications, 2007, 28, 2205-2209.	2.0	26
32	Formation of Polymer–Ionic Liquid Gels Using Vapor Phase Precursors. Macromolecules, 2013, 46, 6852-6857.	2.2	23
33	Surface modification of high aspect ratio structures with fluoropolymer coatings using chemical vapor deposition. Thin Solid Films, 2009, 517, 3547-3550.	0.8	19
34	Solventless Fabrication of Porous-on-Porous Materials. ACS Applied Materials & Interfaces, 2013, 5, 9714-9718.	4.0	18
35	Systematic study of the growth and morphology of vapor deposited porous polymer membranes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	18
36	Giant Lipid Vesicle Formation Using Vapor-Deposited Charged Porous Polymers. Langmuir, 2018, 34, 9025-9035.	1.6	17

#	Article	IF	CITATIONS
37	Synthesis of Polymer Nanoparticles via Vapor Phase Deposition onto Liquid Substrates. Macromolecular Rapid Communications, 2014, 35, 2000-2004.	2.0	15
38	Vapor Deposition of Functional Porous Polymer Membranes. ACS Applied Polymer Materials, 2020, 2, 98-104.	2.0	13
39	Responsive Polymer Welds via Solution Casting for Stabilized Self-Assembly. ACS Applied Materials & Interfaces, 2012, 4, 6911-6916.	4.0	12
40	Allâ€Dry Fabrication of Poly(methacrylic acid)â€Based Membranes with Controlled Dissolution Behavior. Macromolecular Materials and Engineering, 2015, 300, 1079-1084.	1.7	12
41	Vapor Phase Fabrication of Hydrophilic and Hydrophobic Asymmetric Polymer Membranes. Macromolecular Materials and Engineering, 2016, 301, 1037-1043.	1.7	12
42	Two-Stage Growth of Polymer Nanoparticles at the Liquid–Vapor Interface by Vapor-Phase Polymerization. Langmuir, 2016, 32, 11014-11020.	1.6	12
43	Sequential deposition of patterned porous polymers using poly(dimethylsiloxane) masks. Polymer, 2017, 126, 463-469.	1.8	12
44	Effects of surface tension and viscosity on gold and silver sputtered onto liquid substrates. Applied Physics Letters, 2018, 112, .	1.5	12
45	Interactions between polymers and liquids during initiated chemical vapor deposition onto liquid substrates. Molecular Systems Design and Engineering, 2020, 5, 15-21.	1.7	12
46	Formation of Porous Polymer Coatings on Complex Substrates Using Vapor Phase Precursors. Macromolecular Materials and Engineering, 2016, 301, 371-376.	1.7	11
47	Fabrication of Hydrogen-Selective Silica Membranes via Pyrolysis of Vapor Deposited Polymer Films. Industrial & Engineering Chemistry Research, 2019, 58, 15190-15198.	1.8	11
48	Engineered hydrophobicity of discrete microfluidic elements for double emulsion generation. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	10
49	Process–Structure–Property Relationships for Porous Membranes Formed by Polymerization of Solid Monomer by a Vapor-Phase Initiator. Macromolecules, 2018, 51, 10297-10303.	2.2	10
50	Effect of transition metal salts on the initiated chemical vapor deposition of polymer thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	9
51	Fabricating Polymer Canopies onto Structured Surfaces Using Liquid Scaffolds. ACS Applied Materials & Interfaces, 2015, 7, 23056-23061.	4.0	8
52	Fabrication of ionic liquid gel beads via sequential deposition. Thin Solid Films, 2017, 635, 17-22.	0.8	8
53	Solventâ€Free Synthesis of Selectively Wetting Multilayer and Janus Membranes. Advanced Materials Interfaces, 2020, 7, 2001103.	1.9	8
54	Formation of Heterogeneous Polymer Films via Simultaneous or Sequential Depositions of Soluble and Insoluble Monomers onto Ionic Liquids. Langmuir, 2013, 29, 10448-10454.	1.6	7

#	ARTICLE	IF	CITATIONS
55	Synthesis of Inorganic/Organic Hybrid Materials via Vapor Deposition onto Liquid Surfaces. ACS Applied Nano Materials, 2018, 1, 6575-6579.	2.4	7
56	Robust Vapor-Deposited Antifouling Fluoropolymer Coatings for Stainless Steel Polymerization Reactor Components. Industrial & Engineering Chemistry Research, 2020, 59, 15264-15270.	1.8	7
57	Copolymerization of 1-Ethyl-3-vinylimidazolium Bis(trifluoromethylsulfonyl)imide via Initiated Chemical Vapor Deposition. Macromolecules, 2014, 47, 6657-6663.	2.2	6
58	Solventless grafting of functional polymer coatings onto Parylene C. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	6
59	Scratch-Resistant Porous Polymer Coatings with Enhanced Adhesion to Planar and Curved Substrates. ACS Applied Polymer Materials, 2020, 2, 3339-3345.	2.0	6
60	Synthesis of Functional Particles by Condensation and Polymerization of Monomer Droplets in Silicone Oils. Langmuir, 2017, 33, 7701-7707.	1.6	5
61	Modular microfluidics for double emulsion formation. Methods in Cell Biology, 2018, 148, 161-176.	0.5	5
62	Synthesis of pH-Responsive Polymer Sponge Coatings and Freestanding Films via Vapor-Phase Deposition. ACS Applied Polymer Materials, 2021, 3, 6366-6374.	2.0	5
63	Initiated Chemical Vapor Deposition of Polymers Onto Liquid Substrates. Nanoscience and Nanotechnology Letters, 2015, 7, 39-44.	0.4	4
64	Downstream Monomer Capture and Polymerization during Vapor Phase Fabrication of Porous Membranes. Industrial & Engineering Chemistry Research, 2019, 58, 9908-9914.	1.8	4
65	Scale-up modeling for manufacturing nanoparticles using microfluidic T-junction. IISE Transactions, 2018, 50, 892-899.	1.6	3
66	Oblique angle initiated chemical vapor deposition for patterning film growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	3
67	Effects of Standing Waves on the Growth and Stability of Vapor Deposited Polymer Films. ACS Applied Polymer Materials, 2019, 1, 1930-1934.	2.0	2
68	Vapor Deposition of Silicon-Containing Microstructured Polymer Films onto Silicone Oil Substrates. Langmuir, 2021, 37, 13859-13866.	1.6	1
69	Vapor-Deposited Porous Polymers for the Fabrication of Giant Lipid Vesicles. Biophysical Journal, 2018, 114, 542a-543a.	0.2	0