Oded Shoseyov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663549/publications.pdf

Version: 2024-02-01

46 papers

2,632 citations

279798 23 h-index 223800 46 g-index

48 all docs

48 docs citations

48 times ranked

4255 citing authors

#	Article	IF	CITATIONS
1	Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology, 2016, 39, 76-88.	6.6	733
2	Carbohydrate Binding Modules: Biochemical Properties and Novel Applications. Microbiology and Molecular Biology Reviews, 2006, 70, 283-295.	6.6	460
3	Highly Modified Cellulose Nanocrystals and Formation of Epoxy-Nanocrystalline Cellulose (CNC) Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28086-28095.	8.0	137
4	Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals. Langmuir, 2018, 34, 3925-3933.	3.5	120
5	Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum, 1997, 99, 153-159.	5.2	115
6	Production of Bioactive, Post-Translationally Modified, Heterotrimeric, Human Recombinant Type-l Collagen in Transgenic Tobacco. Biomacromolecules, 2009, 10, 2640-2645.	5.4	110
7	Immobilization of recombinant heparinase I fused to cellulose-binding domain. Biotechnology and Bioengineering, 1999, 65, 17-23.	3.3	69
8	Multifunctional Cellulosic Scaffolds from Modified Cellulose Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2010-2015.	8.0	69
9	Species-independent analytical tools for next-generation agriculture. Nature Plants, 2020, 6, 1408-1417.	9.3	63
10	Wet Spinning and Drawing of Human Recombinant Collagen. ACS Biomaterials Science and Engineering, 2016, 2, 349-360.	5.2	58
11	Human Recombinant Type I Collagen Produced in Plants. Tissue Engineering - Part A, 2013, 19, 1527-1533.	3.1	49
12	Human collagen produced in plants. Bioengineered, 2014, 5, 49-52.	3.2	46
13	Highly Charged Cellulose Nanocrystals Applied as A Water Treatment Flocculant. Nanomaterials, 2019, 9, 272.	4.1	44
14	Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall. Colloids and Interfaces, 2019, 3, 46.	2.1	43
15	Novel Methodology for Enzymatic Removal of Atrazine from Water by CBD-Fusion Protein Immobilized on Cellulose. Environmental Science & Environmental S	10.0	39
16	Cellulose Nanocrystals (CNCs) Induced Crystallization of Polyvinyl Alcohol (PVA) Super Performing Nanocomposite Films. Macromolecular Bioscience, 2019, 19, e1800347.	4.1	38
17	A Paper-Based Near-Infrared Optical Biosensor for Quantitative Detection of Protease Activity Using Peptide-Encapsulated SWCNTs. Sensors, 2020, 20, 5247.	3.8	36
18	Sugars enhance the expression of gibberellin-induced genes in developing petunia flowers. Physiologia Plantarum, 2000, 109, 196-202.	5.2	33

#	Article	IF	CITATIONS
19	Stable White Lightâ€Emitting Biocomposite Films. Advanced Functional Materials, 2018, 28, 1706967.	14.9	32
20	Additive Manufacturing of 3D Structures Composed of Wood Materials. Advanced Materials Technologies, 2019, 4, 1900158.	5 . 8	32
21	Bionanocomposite Films from Resilin-CBD Bound to Cellulose Nanocrystals. Industrial Biotechnology, 2015, 11, 44-58.	0.8	29
22	A nanoscale paper-based near-infrared optical nose (NIRON). Biosensors and Bioelectronics, 2021, 172, 112763.	10.1	28
23	Growth modulation of transgenic potato plants by heterologous expression of bacterial carbohydrate-binding module. Molecular Breeding, 2006, 17, 355-364.	2.1	27
24	Identification of genes related to skin development in potato. Plant Molecular Biology, 2017, 94, 481-494.	3.9	26
25	The influence of poly(ethylene glycol) ether tetrasuccinimidyl glutarate on the structural, physical, and biological properties of collagen fibers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 914-922.	3.4	25
26	3D Printing of Cellulose Nanocrystal-Loaded Hydrogels through Rapid Fixation by Photopolymerization. Langmuir, 2021, 37, 6451-6458.	3 . 5	21
27	Cellulose Nanocrystals and Corn Zein Oxygen and Water Vapor Barrier Biocomposite Films. Nanomaterials, 2021, 11, 247.	4.1	17
28	When bottom-up meets top-down. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 428-429.	7.1	16
29	Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly. International Journal of Molecular Sciences, 2016, 17, 1573.	4.1	15
30	Plant Recombinant Human Collagen Type I Hydrogels for Corneal Regeneration. Regenerative Engineering and Translational Medicine, 2022, 8, 269-283.	2.9	14
31	Human recombinant RNASET2: A potential anti-cancer drug. Oncoscience, 2016, 3, 71-84.	2.2	12
32	Human RNASET2 derivatives as potential anti-angiogenic agents: actin binding sequence identification and characterization. Oncoscience, 2014, 2, 31-43.	2.2	10
33	Human recombinant truncated RNASET2, devoid of RNase activity; A potential cancer therapeutic agent. Oncotarget, 2014, 5, 11464-11478.	1.8	10
34	Spin-Induced Organization of Cellulose Nanocrystals. Biomacromolecules, 2022, 23, 2098-2105.	5 . 4	9
35	The assembly of C. elegans lamins into macroscopic fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 35-43.	3.1	6
36	Stable Expression of Adalimumab in Nicotiana tabacum. Molecular Biotechnology, 2018, 60, 387-395.	2.4	6

3

#	Article	IF	CITATIONS
37	Effects of the 3D sizing of polyacrylonitrile fabric with carbon nanotube–SP1 protein complex on the interfacial properties of polyacrylonitrile/phenolic composites. Journal of Composite Materials, 2016, 50, 1031-1036.	2.4	5
38	Nanocellulose Composite Biomaterials in Industry and Medicine. Biologically-inspired Systems, 2019, , 693-784.	0.2	5
39	Wood Warping Composite by 3D Printing. Polymers, 2022, 14, 733.	4.5	5
40	Fabrication of Second Skin from Keratin and Melanin. Polymers, 2020, 12, 2568.	4. 5	4
41	Ecogeographic Conditions Dramatically Affect Trans-Resveratrol and Other Major Phenolics' Levels in Wine at a Semi-Arid Area. Plants, 2022, 11, 629.	3.5	4
42	Production and Characterization of Recombinant Collagen-Binding Resilin Nanocomposite for Regenerative Medicine Applications. Regenerative Engineering and Translational Medicine, 2019, 5, 362-372.	2.9	3
43	Lightâ€Emitting Biocomposites: Stable White Lightâ€Emitting Biocomposite Films (Adv. Funct. Mater.) Tj ETQq1	1 0,78431 14.9	4 rgBT /Ove
44	BactoSpin: Novel Technology for Rapid Bacteria Detection and Antibiotic Susceptibility Testing. Sensors, 2021, 21, 5902.	3.8	2
45	Intake of Radionuclides in the Trees of Fukushima Forests 4. Binding of Radioiodine to Xyloglucan. Forests, 2020, 11, 957.	2.1	1
46	Inside Back Cover: Electrodeposition of Single-Metal Nanoparticles on Stable Protein 1 Membranes: Application of Plasmonic Sensing by Single Nanoparticles (Angew. Chem. Int. Ed. 1/2012). Angewandte Chemie - International Edition, 2012, 51, 277-277.	13.8	0