Wendy Keung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663402/publications.pdf

Version: 2024-02-01

186209 161767 3,099 68 28 citations h-index g-index papers

71 71 71 5479 docs citations times ranked citing authors all docs

54

#	Article	IF	CITATIONS
1	Targeting fatty acid and carbohydrate oxidation â€" A novel therapeutic intervention in the ischemic and failing heart. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1333-1350.	1.9	298
2	Inhibition of De Novo Ceramide Synthesis Reverses Diet-Induced Insulin Resistance and Enhances Whole-Body Oxygen Consumption. Diabetes, 2010, 59, 2453-2464.	0.3	296
3	Role of fatty acid uptake and fatty acid \hat{l}^2 -oxidation in mediating insulin resistance in heart and skeletal muscle. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1-22.	1.2	203
4	Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17358-17363.	3.3	188
5	Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Analytical Chemistry, 2016, 88, 10019-10027.	3.2	181
6	Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovascular Research, 2012, 94, 359-369.	1.8	154
7	Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids in Health and Disease, 2017, 16, 12.	1.2	130
8	Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials, 2018, 163, 116-127.	5.7	130
9	A Simple, Cost-Effective but Highly Efficient System for Deriving Ventricular Cardiomyocytes from Human Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 1704-1716.	1.1	105
10	Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice. Diabetes, 2013, 62, 711-720.	0.3	98
11	Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2014, 5, 17.	2.4	67
12	Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias. Biomaterials, 2013, 34, 8878-8886.	5.7	66
13	Proteomic Analysis of Human Pluripotent Stem Cell–Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation. Circulation: Cardiovascular Genetics, 2015, 8, 427-436.	5.1	61
14	Activating PPARα Prevents Post–Ischemic Contractile Dysfunction in Hypertrophied Neonatal Hearts. Circulation Research, 2015, 117, 41-51.	2.0	60
15	A Heartâ€Breast Cancerâ€onâ€aâ€Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy. Small, 2021, 17, e2004258.	5.2	57
16	Electrophysiological mechanisms of long and short QT syndromes. IJC Heart and Vasculature, 2017, 14, 8-13.	0.6	50
17	Machine Learning of Human Pluripotent Stem Cell-Derived Engineered Cardiac Tissue Contractility for Automated Drug Classification. Stem Cell Reports, 2017, 9, 1560-1572.	2.3	45
18	Inhibition of Serine Palmitoyl Transferase I Reduces Cardiac Ceramide Levels and Increases Glycolysis Rates following Diet-Induced Insulin Resistance. PLoS ONE, 2012, 7, e37703.	1.1	44

#	Article	IF	Citations
19	Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardiumâ€onâ€aâ€Chip Application. Advanced Functional Materials, 2020, 30, 1907436.	7.8	42
20	Electrophysiological Mechanisms of Brugada Syndrome: Insights from Pre-clinical and Clinical Studies. Frontiers in Physiology, 2016, 7, 467.	1.3	39
21	Human ISL1+ Ventricular Progenitors Self-Assemble into an InÂVivo Functional Heart Patch and Preserve Cardiac Function Post Infarction. Molecular Therapy, 2018, 26, 1644-1659.	3.7	38
22	Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei. Physiology and Behavior, 2013, 118, 165-170.	1.0	36
23	Human Cardiac Ventricularâ€Like Organoid Chambers and Tissue Strips From Pluripotent Stem Cells as a Twoâ€Tiered Assay for Inotropic Responses. Clinical Pharmacology and Therapeutics, 2019, 106, 402-414.	2.3	36
24	Transcriptome-Guided Functional Analyses Reveal Novel Biological Properties and Regulatory Hierarchy of Human Embryonic Stem Cell-Derived Ventricular Cardiomyocytes Crucial for Maturation. PLoS ONE, 2013, 8, e77784.	1.1	35
25	Phospholamban as a Crucial Determinant of the Inotropic Response of Human Pluripotent Stem Cellâ€"Derived Ventricular Cardiomyocytes and Engineered 3-Dimensional Tissue Constructs. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 193-202.	2.1	33
26	Singleâ€Cell Transcriptomics of Engineered Cardiac Tissues From Patientâ€Specific Induced Pluripotent Stem Cellâ€"Derived Cardiomyocytes Reveals Abnormal Developmental Trajectory and Intrinsic Contractile Defects in Hypoplastic Right Heart Syndrome. Journal of the American Heart Association, 2020, 9, e016528.	1.6	30
27	Acute impairment of contractile responses by $17\hat{l}^2$ -estradiol is cAMP and protein kinase G dependent in vascular smooth muscle cells of the porcine coronary arteries. British Journal of Pharmacology, 2005, 144, 71-79.	2.7	28
28	Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H954-H960.	1.5	28
29	Glucagon and a glucagonâ€GLPâ€1 dualâ€agonist increases cardiac performance with different metabolic effects in insulinâ€resistant hearts. British Journal of Pharmacology, 2012, 165, 2736-2748.	2.7	28
30	Tachycardia-bradycardia syndrome: Electrophysiological mechanisms and future therapeutic approaches (Review). International Journal of Molecular Medicine, 2017, 39, 519-526.	1.8	28
31	Trimetazidine Therapy Prevents Obesity-Induced Cardiomyopathy in Mice. Canadian Journal of Cardiology, 2014, 30, 940-944.	0.8	26
32	Epigenetic Regulation of the Electrophysiological Phenotype of Human Embryonic Stem Cell-Derived Ventricular Cardiomyocytes: Insights for Driven Maturation and Hypertrophic Growth. Stem Cells and Development, 2013, 22, 2678-2690.	1.1	25
33	Non-genomic activation of adenylyl cyclase and protein kinase G by $17\hat{l}^2$ -estradiol in vascular smooth muscle of the rat superior mesenteric artery. Pharmacological Research, 2011, 64, 509-516.	3.1	23
34	NON-GENOMIC VASCULAR ACTIONS OF FEMALE SEX HORMONES: PHYSIOLOGICAL IMPLICATIONS AND SIGNALLING PATHWAYS. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 822-826.	0.9	21
35	Role of the atypical protein kinase Cζ in regulation of 5′-AMP-activated protein kinase in cardiac and skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E349-E357.	1.8	21
36	Polycystin-2 Plays an Essential Role in Glucose Starvation-Induced Autophagy in Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells, 2018, 36, 501-513.	1.4	20

#	Article	IF	CITATIONS
37	Malonyl-CoA mediates leptin hypothalamic control of feeding independent of inhibition of CPT-1a. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R209-R217.	0.9	19
38	Inhibition of malonyl-CoA decarboxylase reduces the inflammatory response associated with insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1459-E1468.	1.8	19
39	Nongenomic responses to $17\hat{l}^2$ -estradiol in male rat mesenteric arteries abolish intrinsic gender differences in vascular responses. British Journal of Pharmacology, 2005, 146, 1148-1155.	2.7	17
40	Treatment with the 3-Ketoacyl-CoA Thiolase Inhibitor Trimetazidine Does Not Exacerbate Whole-Body Insulin Resistance in Obese Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 487-496.	1.3	17
41	An abnormal TRPV4-related cytosolic Ca2+ rise in response to uniaxial stretch in induced pluripotent stem cells-derived cardiomyocytes from dilated cardiomyopathy patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2964-2972.	1.8	17
42	Circulating high-sensitivity troponin T and microRNAs as markers of myocardial damage during childhood leukaemia treatment. Pediatric Research, 2021, 89, 1245-1252.	1.1	16
43	Cardiac hypertrophy in the newborn delays the maturation of fatty acid \hat{I}^2 -oxidation and compromises postischemic functional recovery. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1784-H1794.	1.5	15
44	Transient activation of P38 MAP kinase and up-regulation of Pim-1 kinase in cardiac hypertrophy despite no activation of AMPK. Journal of Molecular and Cellular Cardiology, 2008, 45, 404-410.	0.9	14
45	Isoproterenol stimulates 5′-AMP-activated protein kinase and fatty acid oxidation in neonatal hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1135-H1145.	1.5	14
46	Intracerebroventricular Leptin Administration Differentially Alters Cardiac Energy Metabolism in Mice Fed a Low-fat and High-fat Diet. Journal of Cardiovascular Pharmacology, 2011, 57, 103-113.	0.8	13
47	Genetic and Pharmacological Inhibition of Malonyl CoA Decarboxylase Does Not Exacerbate Age-Related Insulin Resistance in Mice. Diabetes, 2016, 65, 1883-1891.	0.3	13
48	Chronic Central Leptin Decreases Food Intake and Improves Glucose Tolerance in Diet-Induced Obese Mice Independent of Hypothalamic Malonyl CoA Levels and Skeletal Muscle Insulin Sensitivity. Endocrinology, 2011, 152, 4127-4137.	1.4	12
49	Important role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E336-E347.	1.8	11
50	Non-cell autonomous cues for enhanced functionality of human embryonic stem cell-derived cardiomyocytes via maturation of sarcolemmal and mitochondrial KATP channels. Scientific Reports, 2016, 6, 34154.	1.6	11
51	Sarco/endoplasmic reticulum Ca ²⁺ -ATPase is a more effective calcium remover than sodium-calcium exchanger in human embryonic stem cell-derived cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1105-H1115.	1.5	11
52	Genistein potentiates protein kinase A activity in porcine coronary artery. Molecular and Cellular Biochemistry, 2008, 311, 37-44.	1.4	10
53	Accumulation of ceramide in slowâ€twitch muscle contributes to the development of insulin resistance in the obese JCR:LAâ€cp rat. Experimental Physiology, 2015, 100, 730-741.	0.9	10
54	Combinatorial Treatment of Human Cardiac Engineered Tissues With Biomimetic Cues Induces Functional Maturation as Revealed by Optical Mapping of Action Potentials and Calcium Transients. Frontiers in Physiology, 2020, 11, 165.	1.3	10

#	Article	IF	CITATIONS
55	TRPV6 protects ER stress-induced apoptosis via ATF6α-TRPV6-JNK pathway in human embryonic stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2018, 120, 1-11.	0.9	9
56	α-Lipoic acid increases cardiac glucose oxidation independent of AMP-activated protein kinase in isolated working rat hearts. Basic Research in Cardiology, 2007, 102, 436-444.	2.5	8
57	Modulation of chromatin remodeling proteins SMYD1 and SMARCD1 promotes contractile function of human pluripotent stem cell-derived ventricular cardiomyocyte in 3D-engineered cardiac tissues. Scientific Reports, 2019, 9, 7502.	1.6	8
58	Probing flecainide block of I using human pluripotent stem cell-derived ventricular cardiomyocytes adapted to automated patch-clamping and 2D monolayers. Toxicology Letters, 2018, 294, 61-72.	0.4	7
59	Effects of pharmacological gap junction and sodium channel blockade on S1S2 restitution properties in Langendorff-perfused mouse hearts. Oncotarget, 2017, 8, 85341-85352.	0.8	7
60	Circulating Sex Hormones Modulate Vascular Contractions and Acute Response to $17\hat{l}^2$ -Estradiol in Rat Mesenteric Arteries. Pharmacology, 2011, 88, 55-64.	0.9	6
61	Morphometric Analysis of Human Embryonic Stem Cell-Derived Ventricular Cardiomyocytes: Determining the Maturation State of a Population by Quantifying Parameters in Individual Cells. Stem Cells International, 2015, 2015, 1-13.	1.2	5
62	Human Pluripotent Stem Cells for Modeling of Anticancer Therapy-Induced Cardiotoxicity and Cardioprotective Drug Discovery. Frontiers in Pharmacology, 2021, 12, 650039.	1.6	5
63	AAV-mediated conversion of human pluripotent stem cell-derived pacemaker. Biochemical and Biophysical Research Communications, 2017, 494, 346-351.	1.0	4
64	Structural and Mechanistic Bases of Nuclear Calcium Signaling in Human Pluripotent Stem Cell-Derived Ventricular Cardiomyocytes. Stem Cells International, 2019, 2019, 1-17.	1.2	4
65	Myocardial Tissue Engineering: Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardiumâ€onâ€a hip Application (Adv. Funct. Mater. 12/2020). Advanced Functional Materials, 2020, 30, 2070079.	7.8	2
66	Arrhythmic Risk Assessment of Hypokalaemia Using Human Pluripotent Stem Cell-Derived Cardiac Anisotropic Sheets. Frontiers in Cell and Developmental Biology, 2021, 9, 681665.	1.8	2
67	Organâ€onâ€aâ€Chip: A Heartâ€Breast Cancerâ€onâ€aâ€Chip Platform for Disease Modeling and Monitoring of Cardiotoxicity Induced by Cancer Chemotherapy (Small 15/2021). Small, 2021, 17, 2170070.	5.2	O
68	Phytoestrogens and Cardiovascular Disorders. Progress in Experimental Cardiology, 2004, , 513-524.	0.0	0