
Gurpreet Baht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of Meteorinâ€like in skeletal development and bone fracture healing. Journal of Orthopaedic Research, 2022, 40, 2510-2521.	2.3	10
2	Rejuvenation of neutrophils and their extracellular vesicles is associated with enhanced aged fracture healing. Aging Cell, 2022, 21, .	6.7	11
3	Parabiosis: Assessing the Effects of Circulating Cells and Factors on the Skeleton. Methods in Molecular Biology, 2021, 2230, 105-113.	0.9	2
4	In Vivo Sequestration of Innate Small Molecules to Promote Bone Healing. Advanced Materials, 2020, 32, e1906022.	21.0	20
5	Maresin 1 resolves agedâ€associated macrophage inflammation to improve bone regeneration. FASEB Journal, 2020, 34, 13521-13532.	0.5	26
6	Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism. Nature Metabolism, 2020, 2, 278-289.	11.9	87
7	Bone Healing: In Vivo Sequestration of Innate Small Molecules to Promote Bone Healing (Adv. Mater.) Tj ETQq1 1	0,784314 21.0	rgBT /Over
8	Lowering circulating apolipoprotein E levels improves aged bone fracture healing. JCI Insight, 2019, 4, .	5.0	21
9	The Role of the Immune Cells in Fracture Healing. Current Osteoporosis Reports, 2018, 16, 138-145.	3.6	152
10	Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nature Communications, 2018, 9, 5191.	12.8	87
11	Pharmacologically targeting beta-catenin for NF1 associated deficiencies in fracture repair. Bone, 2017, 98, 31-36.	2.9	21
12	Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin. Nature Communications, 2015, 6, 7131.	12.8	159
13	Bone Marrow Stress Decreases Osteogenic Progenitors. Calcified Tissue International, 2015, 97, 476-486.	3.1	9
14	Macrophages Promote Osteoblastic Differentiation In Vivo: Implications in Fracture Repair and Bone Homeostasis. Journal of Bone and Mineral Research, 2015, 30, 1090-1102.	2.8	245
15	Activation of hedgehog signaling during fracture repair enhances osteoblasticâ€dependent matrix formation. Journal of Orthopaedic Research, 2014, 32, 581-586.	2.3	35
16	Phosphorylation of Ser136 is critical for potent bone sialoprotein-mediated nucleation of hydroxyapatite crystals. Biochemical Journal, 2010, 428, 385-395.	3.7	41
17	Bone sialoprotein–collagen interaction promotes hydroxyapatite nucleation. Matrix Biology, 2008, 27, 600-608.	3.6	124