
Jose Manuel Garcia FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5663100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclodextrin-based gene delivery systems. Chemical Society Reviews, 2011, 40, 1586-1608.	18.7	371
2	Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chemical Society Reviews, 2013, 42, 4746.	18.7	227
3	Optimizing Saccharide-Directed Molecular Delivery to Biological Receptors:Â Design, Synthesis, and Biological Evaluation of Glycodendrimerâ dyclodextrin Conjugates. Journal of the American Chemical Society, 2004, 126, 10355-10363.	6.6	216
4	Multivalency in heterogeneous glycoenvironments: hetero-glycoclusters, -glycopolymers and -glycoassemblies. Chemical Society Reviews, 2013, 42, 4518-4531.	18.7	143
5	Probing Secondary Carbohydrateâ~'Protein Interactions with Highly Dense Cyclodextrin-Centered Heteroglycoclusters:Â The Heterocluster Effect. Journal of the American Chemical Society, 2005, 127, 7970-7971.	6.6	123
6	Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, G _{M1} -gangliosidosis and Fabry diseases. Chemical Communications, 2016, 52, 5497-5515.	2.2	122
7	Preorganized, Macromolecular, Geneâ€Delivery Systems. Chemistry - A European Journal, 2010, 16, 6728-6742.	1.7	108
8	Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease. Scientific Reports, 2015, 5, 10903.	1.6	107
9	Pharmacological chaperone therapy for Gaucher disease: a patent review. Expert Opinion on Therapeutic Patents, 2011, 21, 885-903.	2.4	106
10	Multivalent Cyclooligosaccharides: Versatile Carbohydrate Clusters with Dual Role as Molecular Receptors and Lectin Ligands. Chemistry - A European Journal, 2002, 8, 1982.	1.7	102
11	Polycationic Amphiphilic Cyclodextrins for Gene Delivery: Synthesis and Effect of Structural Modifications on Plasmid DNA Complex Stability, Cytotoxicity, and Gene Expression. Chemistry - A European Journal, 2009, 15, 12871-12888.	1.7	96
12	Mannosyl-coated nanocomplexes from amphiphilic cyclodextrins and pDNA for site-specific gene delivery. Biomaterials, 2011, 32, 7263-7273.	5.7	96
13	Fullereneâ€sp ² â€Iminosugar Balls as Multimodal Ligands for Lectins and Glycosidases: A Mechanistic Hypothesis for the Inhibitory Multivalent Effect. Chemistry - A European Journal, 2013, 19, 16791-16803.	1.7	90
14	lsothiocyanates and cyclic thiocarbamates of α, α′-trehalose, sucrose, and cyclomaltooligosaccharides. Carbohydrate Research, 1995, 268, 57-71.	1.1	85
15	Insights in cellular uptake mechanisms of pDNA–polycationic amphiphilic cyclodextrin nanoparticles (CDplexes). Journal of Controlled Release, 2010, 143, 318-325.	4.8	85
16	Urea-, Thiourea-, and Guanidine-Linked Glycooligomers as Phosphate Binders in Water. Journal of Organic Chemistry, 2006, 71, 5136-5143.	1.7	82
17	Chaperone Activity of Bicyclic Nojirimycin Analogues for Gaucher Mutations in Comparison with <i>N</i> â€{ <i>n</i> â€nonyl)Deoxynojirimycin. ChemBioChem, 2009, 10, 2780-2792.	1.3	82
18	Carbohydrate-Based Receptors with Multiple Thiourea Binding Sites. Multipoint Hydrogen Bond Recognition of Dicarboxylates and Monosaccharidesâ€. Journal of Organic Chemistry, 2001, 66, 1366-1372.	1.7	81

#	Article	IF	CITATIONS
19	Qualitative and quantitative evaluation of mono- and disaccharides in d-fructose, d-glucose and sucrose caramels by gas–liquid chromatography–mass spectrometry. Journal of Chromatography A, 1999, 844, 283-293.	1.8	80
20	Modulation of microglia polarization dynamics during diabetic retinopathy in db / db mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1663-1674.	1.8	80
21	Functional Evaluation of Carbohydrate-Centred Glycoclusters by Enzyme-Linked Lectin Assay: Ligands for Concanavalin A. ChemBioChem, 2004, 5, 771-777.	1.3	79
22	Rational design of cationic cyclooligosaccharides as efficient gene delivery systems. Chemical Communications, 2008, , 2001.	2.2	79
23	β-Cyclodextrin-Based Polycationic Amphiphilic "Click―Clusters: Effect of Structural Modifications in Their DNA Complexing and Delivery Properties. Journal of Organic Chemistry, 2011, 76, 5882-5894.	1.7	78
24	Preorganized macromolecular gene delivery systems: amphiphilic β-cyclodextrin "click clustersâ€ . Organic and Biomolecular Chemistry, 2009, 7, 2681.	1.5	77
25	Synthesis and comparative lectin-binding affinity of mannosyl-coated β-cyclodextrin-dendrimer constructs. Chemical Communications, 2000, , 1489-1490.	2.2	76
26	Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Human Molecular Genetics, 2013, 22, 633-645.	1.4	75
27	Multi-Mannosides Based on a Carbohydrate Scaffold:  Synthesis, Force Field Development, Molecular Dynamics Studies, and Binding Affinities for Lectin Con A. Journal of Organic Chemistry, 2007, 72, 9032-9045.	1.7	73
28	1,2,3-Triazoles and related glycoconjugates as new glycosidase inhibitors. Tetrahedron, 2005, 61, 9118-9128.	1.0	72
29	Probing Carbohydrate-Lectin Recognition in Heterogeneous Environments with Monodisperse Cyclodextrin-Based Glycoclusters. Journal of Organic Chemistry, 2012, 77, 1273-1288.	1.7	72
30	Synthesis of N-, S-, and C-glycoside castanospermine analogues with selective neutral α-glucosidase inhibitory activity as antitumour agents. Chemical Communications, 2010, 46, 5328.	2.2	71
31	A Bicyclic 1-Deoxygalactonojirimycin Derivative as a Novel Pharmacological Chaperone for GM1 Gangliosidosis. Molecular Therapy, 2013, 21, 526-532.	3.7	70
32	Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chemical Communications, 2020, 56, 5207-5222.	2.2	70
33	Generalized Anomeric Effect in Action:  Synthesis and Evaluation of Stable Reducing Indolizidine Glycomimetics as Glycosidase Inhibitors. Journal of Organic Chemistry, 2000, 65, 136-143.	1.7	65
34	Potent Glycosidase Inhibition with Heterovalent Fullerenes: Unveiling the Binding Modes Triggering Multivalent Inhibition. Chemistry - A European Journal, 2016, 22, 11450-11460.	1.7	65
35	Carbohydrate Microarrays. ChemBioChem, 2002, 3, 819-822.	1.3	64
36	Comparative studies on lectin–carbohydrate interactions in low and high density homo- and heteroglycoclusters. Organic and Biomolecular Chemistry, 2010, 8, 1849.	1.5	62

#	Article	IF	CITATIONS
37	Targeted gene delivery by new folate–polycationic amphiphilic cyclodextrin–DNA nanocomplexes in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 390-397.	2.0	62
38	pHâ€Responsive Pharmacological Chaperones for Rescuing Mutant Glycosidases. Angewandte Chemie - International Edition, 2015, 54, 11696-11700.	7.2	62
39	Chiral 2-thioxotetrahydro-1,3-O,N-heterocycles from carbohydrates. 2. Stereocontrolled synthesis of oxazolidine pseudo-C-nucleosides and bicyclic oxazine-2-thiones. Journal of Organic Chemistry, 1993, 58, 5192-5199.	1.7	61
40	Synthesis and Evaluation of Isourea-Type Glycomimetics Related to the Indolizidine and Trehazolin Glycosidase Inhibitor Families. Journal of Organic Chemistry, 2003, 68, 8890-8901.	1.7	58
41	The Two Main Olfactory Receptor Families in Drosophila, ORs and IRs: A Comparative Approach. Frontiers in Cellular Neuroscience, 2018, 12, 253.	1.8	58
42	Tailoring β-Cyclodextrin for DNA Complexation and Delivery by Homogeneous Functionalization at the Secondary Face. Organic Letters, 2008, 10, 5143-5146.	2.4	56
43	Structural Basis of Pharmacological Chaperoning for Human β-Galactosidase. Journal of Biological Chemistry, 2014, 289, 14560-14568.	1.6	56
44	Sugar Thioureas as Anion Receptors. Effect of Intramolecular Hydrogen Bonding in the Carboxylate Binding Properties of Symmetric Sugar Thioureas. Organic Letters, 1999, 1, 1217-1220.	2.4	54
45	Tuning glycosidase inhibition through aglycone interactions: pharmacological chaperones for Fabry disease and GM1 gangliosidosis. Chemical Communications, 2012, 48, 6514.	2.2	54
46	Cyclodextrin-Scaffolded Glycoclusters. Chemistry - A European Journal, 1998, 4, 2523-2531.	1.7	53
47	Bicyclic (galacto)nojirimycin analogues as glycosidase inhibitors: Effect of structural modifications in their pharmacological chaperone potential towards β-glucocerebrosidase. Organic and Biomolecular Chemistry, 2011, 9, 3698.	1.5	53
48	Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: a paradigm shift driven by carbon-based glyconanomaterials. Journal of Materials Chemistry B, 2017, 5, 6428-6436.	2.9	53
49	Synthesis and Evaluation of Calystegine B2Analogues as Glycosidase Inhibitors. Journal of Organic Chemistry, 2001, 66, 7604-7614.	1.7	52
50	Polycationic amphiphilic cyclodextrin-based nanoparticles for therapeutic gene delivery. Nanomedicine, 2011, 6, 1697-1707.	1.7	52
51	Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles. Nanoscale, 2015, 7, 2325-2335.	2.8	52
52	N-Thiocarbonyl azasugars: a new family of carbohydrate mimics with controlled anomeric configuration. Chemical Communications, 1997, , 1969.	2.2	51
53	sp ² â€Iminosugar <i>O</i> â€, <i>S</i> â€, and <i>N</i> â€Glycosides as Conformational Mimics of αâ€Linked Disaccharides; Implications for Glycosidase Inhibition. Chemistry - A European Journal, 2012, 18, 8527-8539.	1.7	51
54	Supramolecular Control of Oligosaccharide–Protein Interactions: Switchable and Tunable Ligands for Concanavalin A Based on β-Cyclodextrin. Angewandte Chemie - International Edition, 2006, 45, 5465-5468.	7.2	50

#	Article	IF	CITATIONS
55	Molecular Basis of 1-Deoxygalactonojirimycin Arylthiourea Binding to Human α-Galactosidase A: Pharmacological Chaperoning Efficacy on Fabry Disease Mutants. ACS Chemical Biology, 2014, 9, 1460-1469.	1.6	50
56	Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: a structure–activity relationship study. Organic and Biomolecular Chemistry, 2015, 13, 1708-1723.	1.5	49
57	Pseudoamide-Type Pyrrolidine and Pyrrolizidine Glycomimetics and Their Inhibitory Activities against Glycosidases. Journal of Organic Chemistry, 2004, 69, 3578-3581.	1.7	48
58	A Fluorescent sp ² â€Iminosugar With Pharmacological Chaperone Activity for Gaucher Disease: Synthesis and Intracellular Distribution Studies. ChemBioChem, 2010, 11, 2453-2464.	1.3	47
59	Glycoligand-targeted core–shell nanospheres with tunable drug release profiles from calixarene–cyclodextrin heterodimers. Chemical Communications, 2014, 50, 7440-7443.	2.2	47
60	Correlations between changes in intestinal microbiota composition and performance parameters in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 2015, 99, 418-423.	1.0	47
61	Molecular nanoparticle-based gene delivery systems. Journal of Drug Delivery Science and Technology, 2017, 42, 18-37.	1.4	47
62	Glycosidase inhibition by ring-modified castanospermine analogues: tackling enzyme selectivity by inhibitor tailoring. Organic and Biomolecular Chemistry, 2009, 7, 2738.	1.5	46
63	Di- <scp>d</scp> -fructose Dianhydride-Enriched Caramels: Effect on Colon Microbiota, Inflammation, and Tissue Damage in Trinitrobenzenesulfonic Acid-Induced Colitic Rats. Journal of Agricultural and Food Chemistry, 2010, 58, 6476-6484.	2.4	46
64	The Impact of Heteromultivalency in Lectin Recognition and Glycosidase Inhibition: An Integrated Mechanistic Study. Chemistry - A European Journal, 2017, 23, 6295-6304.	1.7	46
65	Protonic and thermal activation of sucrose and the oligosaccharide composition of caramel. Carbohydrate Research, 1994, 256, C1-C4.	1.1	45
66	6â€Aminoâ€6â€deoxyâ€5,6â€diâ€ <i>N</i> â€{ <i>N</i> ′â€octyliminomethylidene)nojirimycin: Synthesis, Biolo Evaluation, and Crystal Structure in Complex with Acid βâ€Glucosidase. ChemBioChem, 2009, 10, 1480-1485.	gical 1.3	44
67	Multimeric Lactoside "Click Clusters―as Tools to Investigate the Effect of Linker Length in Specific Interactions with Peanut Lectin, Galectinâ€1, and â€3. ChemBioChem, 2010, 11, 1430-1442.	1.3	44
68	Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier. Organic and Biomolecular Chemistry, 2014, 12, 2289-2301.	1.5	44
69	Dependence of Concanavalin A Binding on Anomeric Configuration, Linkage Type, and Ligand Multiplicity for Thiourea-Bridged Mannopyranosyl–β-Cyclodextrin Conjugates. ChemBioChem, 2001, 2, 777.	1.3	43
70	Castanospermine–trehazolin hybrids: a new family of glycomimetics with tuneable glycosidase inhibitory propertiesElectronic supplementary data (ESI) available: full characterization data for the new compounds 7–9, 11, 14–19. See http://www.rsc.org/suppdata/cc/b2/b200162d/. Chemical Communications, 2002, , 848-849.	2.2	43
71	Differential Effects of Carbohydrates on Arabidopsis Pollen Germination. Plant and Cell Physiology, 2017, 58, 691-701.	1.5	43
72	Scalable Syntheses of Both Enantiomers of DNJNAc and DGJNAc from Glucuronolactone: The Effect of <i>N</i> â€Alkylation on Hexosaminidase Inhibition. Chemistry - A European Journal, 2012, 18, 9341-9359.	1.7	42

#	Article	IF	CITATIONS
73	A mild and efficient procedure to remove acetal and dithioacetal protecting groups in carbohydrate derivatives using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Carbohydrate Research, 1995, 274, 263-268.	1.1	41
74	One-pot regioselective synthesis of 21,31-O-(o-xylylene)-capped cyclomaltooligosaccharides: tailoring the topology and supramolecular properties of cyclodextrins. Chemical Communications, 2007, , 3270.	2.2	41
75	The Thiocarbonyl Group in Carbohydrate Chemistry. Sulfur Reports, 1996, 19, 61-159.	0.6	39
76	Glyconanocavities: Cyclodextrins and Beyond. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 149-159.	1.6	39
77	Synthesis and evaluation of sulfamide-type indolizidines as glycosidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2805-2808.	1.0	39
78	Efficient Transfection of Hepatocytes Mediated by mRNA Complexed to Galactosylated Cyclodextrins. Bioconjugate Chemistry, 2012, 23, 1276-1289.	1.8	39
79	New Castanospermine Glycoside Analogues Inhibit Breast Cancer Cell Proliferation and Induce Apoptosis without Affecting Normal Cells. PLoS ONE, 2013, 8, e76411.	1.1	39
80	Host–Guestâ€Mediated DNA Templation of Polycationic Supramolecules for Hierarchical Nanocondensation and the Delivery of Gene Material. Chemistry - A European Journal, 2015, 21, 12093-12104.	1.7	39
81	Synthesis of Calystegine B2, B3, and B4 Analogues: Mapping the Structure-Glycosidase Inhibitory Activity Relationships in the 1-Deoxy-6-oxacalystegine Series. European Journal of Organic Chemistry, 2004, 2004, 1803-1819.	1.2	38
82	Di- <scp>d</scp> -fructose Dianhydride-Enriched Products by Acid Ion-Exchange Resin-Promoted Caramelization of <scp>d</scp> -Fructose: Chemical Analyses. Journal of Agricultural and Food Chemistry, 2010, 58, 1777-1787.	2.4	38
83	Influence of the configurational pattern of sp2-iminosugar pseudo N-, S-, O- and C-glycosides on their glycoside inhibitory and antitumor properties. Carbohydrate Research, 2016, 429, 113-122.	1.1	38
84	sp ² â€lminosugar αâ€glucosidase inhibitor 1â€ <i>C</i> â€octylâ€2â€oxaâ€3â€oxocastanospermin affected breast cancer cell migration through Stim1, β1â€integrin, and FAK signaling pathways. Journal of Cellular Physiology, 2017, 232, 3631-3640.	ne specific 2.0	ally 38
85	Synthesis of Highâ€Mannose Oligosaccharide Analogues through Click Chemistry: True Functional Mimics of Their Natural Counterparts Against Lectins?. Chemistry - A European Journal, 2015, 21, 1978-1991.	1.7	37
86	Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells. Frontiers in Pharmacology, 2017, 8, 249.	1.6	37
87	Synthesis and Comparative Glycosidase Inhibitory Properties of Reducing Castanospermine Analogues. European Journal of Organic Chemistry, 2005, 2005, 2903-2913.	1.2	36
88	Difructose Dianhydrides (DFAs) and DFA-Enriched Products as Functional Foods. Topics in Current Chemistry, 2010, 294, 49-77.	4.0	36
89	Conformationally-Locked <i>N</i> -Glycosides with Selective β-Glucosidase Inhibitory Activity: Identification of a New Non-Iminosugar-Type Pharmacological Chaperone for Gaucher Disease. Journal of Medicinal Chemistry, 2012, 55, 6857-6865.	2.9	36
90	Synthesis and Biophysical Study of Disassembling Nanohybrid Bioconjugates with a Cubic Octasilsesquioxane Core. Advanced Functional Materials, 2012, 22, 3191-3201.	7.8	36

#	Article	IF	CITATIONS
91	A Practical Amine-Free Synthesis of Symmetric Ureas and Thioureas by Self-Condensation of Iso(thio)cyanates. Synthesis, 1999, 1999, 1907-1914.	1.2	35
92	(Pseudo)amide-linked oligosaccharide mimetics: molecular recognition and supramolecular properties. Beilstein Journal of Organic Chemistry, 2010, 6, 20.	1.3	35
93	Dynamic Selfâ€Assembly of Polycationic Clusters Based on Cyclodextrins for pHâ€Sensitive DNA Nanocondensation and Delivery by Component Design. Chemistry - A European Journal, 2014, 20, 6622-6627.	1.7	35
94	Generalized Anomeric Effect in gem-Diamines: Stereoselective Synthesis of α-N-Linked Disaccharide Mimics. Organic Letters, 2009, 11, 3306-3309.	2.4	34
95	Copper(II)-Complex Directed Regioselective Mono- <i>p</i> -Toluenesulfonylation of Cyclomaltoheptaose at a Primary Hydroxyl Group Position: An NMR and Molecular Dynamics-Aided Design. Journal of Physical Chemistry B, 2011, 115, 7524-7532.	1.2	34
96	Fluorinated Chaperoneâ^'î²-Cyclodextrin Formulations for β-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease. Journal of Medicinal Chemistry, 2017, 60, 1829-1842.	2.9	34
97	Selective protonic activation of isomeric glycosylfructoseswith pyridinium poly(hydrogen fluoride) and synthesis of spirodioxanyl oligosaccharides. Carbohydrate Research, 1992, 237, 223-247.	1.1	33
98	Difructose dianhydrides from sucrose and fructo-oligosaccharides and their use as building blocks for the preparation of amphiphiles, liquid crystals, and polymers. Carbohydrate Research, 1994, 265, 249-269.	1.1	33
99	Synthesis of glycosyl(thio)ureido sugars via carbodiimides and their conformational behaviour in water. Carbohydrate Research, 2000, 326, 161-175.	1.1	33
100	Molecular Basis for βâ€Glucosidase Inhibition by Ringâ€Modified Calystegine Analogues. ChemBioChem, 2008, 9, 2612-2618.	1.3	33
101	Chemical and Enzymatic Approaches to Carbohydrate-Derived Spiroketals: Di-D-Fructose Dianhydrides (DFAs). Molecules, 2008, 13, 1640-1670.	1.7	33
102	Polycationic amphiphilic cyclodextrins as gene vectors: effect of the macrocyclic ring size on the DNA complexing and delivery properties. Organic and Biomolecular Chemistry, 2012, 10, 5570.	1.5	33
103	Selective Antimicrobial and Antibiofilm Disrupting Properties of Functionalized Diamond Nanoparticles Against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> . Particle and Particle Systems Characterization, 2015, 32, 822-830.	1.2	33
104	Inhibitor versus chaperone behaviour of d-fagomine, DAB and LAB sp2-iminosugar conjugates against glycosidases: A structure–activity relationship study in Gaucher fibroblasts. European Journal of Medicinal Chemistry, 2016, 121, 880-891.	2.6	33
105	Building Blocks for Glycopeptide Synthesis. Disaccharide Glycosyl Isothiocyanates. Journal of Carbohydrate Chemistry, 1993, 12, 487-505.	0.4	32
106	Enantiopure 2-Thioxotetrahydro-1,3-O,N-heterocycles from Carbohydrates. 3. Enantiopure C-4 Chiral Oxazine- and Oxazolidine-2-thiones from 3-Deoxy-3-isothiocyanato Sugars. Journal of Organic Chemistry, 1994, 59, 5565-5572.	1.7	32
107	Synthesis, conformational flexibility and preliminary complexation behaviour of α,α′-trehalose-based macrocycles containing thiourea spacers. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	32
108	Synthesis and anomeric stability of (1→6)-thiourea-linked pseudooligosaccharides. Carbohydrate Research, 1999, 320, 37-48.	1.1	32

#	Article	IF	CITATIONS
109	Synthesis, Structure, and Inclusion Capabilities of Trehalose-Based Cyclodextrin Analogues (Cyclotrehalans). Journal of Organic Chemistry, 2008, 73, 2967-2979.	1.7	32
110	Amphiphilic Oligoethyleneimineâ^îî²-Cyclodextrin "Click―Clusters for Enhanced DNA Delivery. Journal of Organic Chemistry, 2013, 78, 8143-8148.	1.7	32
111	Tn Antigen Mimics Based on <i>sp</i> ² -Iminosugars with Affinity for an anti-MUC1 Antibody. Organic Letters, 2016, 18, 3890-3893.	2.4	32
112	Cyclodextrin-mediated crystallization of acid β-glucosidase in complex with amphiphilic bicyclic nojirimycin analogues. Organic and Biomolecular Chemistry, 2011, 9, 4160.	1.5	31
113	o-Xylylene Protecting Group in Carbohydrate Chemistry: Application to the Regioselective Protection of a Single vic-Diol Segment in Cyclodextrins. Journal of Organic Chemistry, 2013, 78, 1390-1403.	1.7	31
114	Tuning of glyconanomaterial shape and size for selective bacterial cell agglutination. Journal of Materials Chemistry B, 2016, 4, 2028-2037.	2.9	31
115	One-step synthesis of non-anomeric sugar isothiocyanates from sugar azides. Carbohydrate Research, 2002, 337, 2329-2334.	1.1	30
116	Intramolecular Benzyl Protection Delivery:  A Practical Synthesis of DMDP and DGDP fromd-Fructose. Organic Letters, 2006, 8, 297-299.	2.4	30
117	Bicyclic Derivatives of <scp>L</scp> â€ldonojirimycin as Pharmacological Chaperones for Neuronopathic Forms of Gaucher Disease. ChemBioChem, 2013, 14, 943-949.	1.3	30
118	Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease. Molecules, 2018, 23, 927.	1.7	30
119	Study of the Conformational and Self-Aggregation Properties of 21,31-O-(o-Xylylene)-per-O-Me-α- and -β-cyclodextrins by Fluorescence and Molecular Modeling. Journal of Physical Chemistry B, 2008, 112, 13717-13729.	1.2	29
120	Regioselective benzoylations of glycopyranosylamines: Synthesis of partially protected glycopyranosyl isothiocyanates. Carbohydrate Research, 1989, 188, 35-44.	1.1	28
121	Cyclotrehalins: Cyclooligosaccharide Receptors Featuring a Hydrophobic Cavity. Angewandte Chemie - International Edition, 2002, 41, 3674-3676.	7.2	28
122	Synthesis and Biological Evaluation of Guanidine-Type Iminosugars. Journal of Organic Chemistry, 2008, 73, 1995-1998.	1.7	28
123	Synthesis of Thiohydantoin-Castanospermine Glycomimetics as Glycosidase Inhibitors. Journal of Organic Chemistry, 2009, 74, 3595-3598.	1.7	28
124	Sugarâ€Modified Foldamers as Conformationally Defined and Biologically Distinct Glycopeptide Mimics. Angewandte Chemie - International Edition, 2013, 52, 10221-10226.	7.2	28
125	Symmetry Complementarityâ€Guided Design of Anthrax Toxin Inhibitors Based on βâ€Cyclodextrin: Synthesis and Relative Activities of Faceâ€6elective Functionalized Polycationic Clusters. ChemMedChem, 2011, 6, 181-192.	1.6	27
126	Antileishmanial activity of sp ² -iminosugar derivatives. RSC Advances, 2015, 5, 21812-21822.	1.7	27

#	Article	IF	CITATIONS
127	Unprecedented inhibition of glycosidase-catalyzed substrate hydrolysis by nanodiamond-grafted O-glycosides. RSC Advances, 2015, 5, 100568-100578.	1.7	27
128	Construction of giant glycosidase inhibitors from iminosugar-substituted fullerene macromonomers. Journal of Materials Chemistry B, 2017, 5, 6546-6556.	2.9	26
129	Highâ€Pressure Nebulization as Application Route for the Peritoneal Administration of siRNA Complexes. Macromolecular Bioscience, 2017, 17, 1700024.	2.1	26
130	Synthesis of Calystegine B2 Analogs by Tandem Tautomerization-Intramolecular Glycosylation of Thioureidosugars. Synlett, 1998, 1998, 316-318.	1.0	25
131	Pharmacological Chaperones for the Treatment of α-Mannosidosis. Journal of Medicinal Chemistry, 2019, 62, 5832-5843.	2.9	25
132	Synthesis, conformational analysis and <i>in vivo</i> assays of an anti-cancer vaccine that features an unnatural antigen based on an sp ² -iminosugar fragment. Chemical Science, 2020, 11, 3996-4006.	3.7	24
133	Syntheses of d-ribosylamines, d-ribopyranosyl isothiocyanates, and d-ribopyranosylthioureas, and their transformations into heterocyclic compounds. Carbohydrate Research, 1988, 173, 1-16.	1.1	23
134	Chiral 2-thioxotetrahydro-1,3-O,N-heterocycles from carbohydrates. Tetrahedron Letters, 1992, 33, 3931-3934.	0.7	23
135	Thioureido-β-cyclodextrins as molecular carriers. Chemical Communications, 1996, , 2741-2742.	2.2	23
136	Carbohydrate-Derived Spiroketals. Stereoselective Synthesis of Di-d-fructose Dianhydrides by Boron Trifluoride Promoted Glycosylationâ^Spiroketalization of Acetal Precursorsâ€. Organic Letters, 2001, 3, 549-552.	2.4	23
137	The o-xylylene protecting group as an element of conformational control of remote stereochemistry in the synthesis of spiroketals. Chemical Communications, 2006, , 2610-2612.	2.2	23
138	Trehalose- and Glucose-Derived Glycoamphiphiles: Small-Molecule and Nanoparticle Toll-Like Receptor 4 (TLR4) Modulators. Journal of Medicinal Chemistry, 2014, 57, 9105-9123.	2.9	23
139	Efficient stereoselective synthesis of 2-acetamido-1,2-dideoxyallonojirimycin (DAJNAc) and sp2-iminosugar conjugates: Novel hexosaminidase inhibitors with discrimination capabilities between the mature and precursor forms of the enzyme. European Journal of Medicinal Chemistry, 2016, 121, 926-938.	2.6	23
140	Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles. Carbohydrate Polymers, 2021, 252, 117135.	5.1	23
141	Synthesis of α- and β-Glycosyl Isothiocyanates via Oxazoline Intermediates. Journal of Organic Chemistry, 2007, 72, 4547-4550.	1.7	22
142	Fluorescent-tagged sp2-iminosugars with potent β-glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry, 2010, 18, 7439-7445.	1.4	22
143	Probing the Nature of the Cluster Effect Observed with Synthetic Multivalent Galactosides and Peanut Agglutinin Lectin. Chemistry - A European Journal, 2013, 19, 729-738.	1.7	22
144	Effects of inulin and di-d-fructose dianhydride-enriched caramels on intestinal microbiota composition and performance of broiler chickens. Animal, 2013, 7, 1779-1788.	1.3	22

#	Article	IF	CITATIONS
145	Plasmidâ€Templated Control of DNA–Cyclodextrin Nanoparticle Morphology through Molecular Vector Design for Effective Gene Delivery. Chemistry - A European Journal, 2018, 24, 3825-3835.	1.7	22
146	Synthesis and biological evaluation of 6-oxa-nor-tropane glycomimetics as glycosidase inhibitors. Tetrahedron, 2007, 63, 7879-7884.	1.0	21
147	Effects of feed additives on ileal mucosa–associated microbiota composition of broiler chickens1. Journal of Animal Science, 2015, 93, 3410-3420.	0.2	21
148	Regioselective sulfonylation at O-2 of cyclomaltoheptaose with 1-(p-tolylsulfonyl)-(1H)-1,2,4-triazole. Carbohydrate Research, 2003, 338, 451-453.	1.1	20
149	Size-Tunable Trehalose-Based Nanocavities: Synthesis, Structure, and Inclusion Properties of Large-Ring Cyclotrehalans. Journal of Organic Chemistry, 2009, 74, 2997-3008.	1.7	20
150	Design and synthesis of a "click―high-mannose oligosaccharide mimic emulating Man8 binding affinity towards Con A. Chemical Communications, 2012, 48, 3733.	2.2	20
151	Synthesis of Multibranched Australine Derivatives from Reducing Castanospermine Analogues through the Amadori Rearrangement of <i>gem</i> -Diamine Intermediates: Selective Inhibitors of β-Glucosidase. Journal of Organic Chemistry, 2014, 79, 11722-11728.	1.7	20
152	Trehalose-based Janus cyclooligosaccharides: the "Click―synthesis and DNA-directed assembly into pH-sensitive transfectious nanoparticles. Chemical Communications, 2016, 52, 10117-10120.	2.2	20
153	Aerosolized Non-viral Nucleic Acid Delivery in the Vaginal Tract of Pigs. Pharmaceutical Research, 2016, 33, 384-394.	1.7	20
154	Influence of intramolecular hydrogen-bonding on the conformational properties of sugar thioureas. Tetrahedron: Asymmetry, 1994, 5, 2325-2334.	1.8	19
155	Synthesis of dispirodioxanyl pseudo-oligosaccharides by selective protonic activation of isomeric glycosylfructoses in anhydrous hydrogen fluoride. Carbohydrate Research, 1994, 251, 1-15.	1.1	19
156	Thermodynamics of the Dimer Formation of 21,31-O-(o-Xylylene)-per-O-Me-γ-cyclodextrin: Fluorescence, Molecular Mechanics and Molecular Dynamics. Journal of Fluorescence, 2009, 19, 975-988.	1.3	19
157	Stereoselective synthesis of 2-acetamido-1,2-dideoxynojirimycin (DNJNAc) and ureido-DNJNAc derivatives as new hexosaminidase inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 6500-6510.	1.5	19
158	Cyclodextrin-based facial amphiphiles: assessing the impact of the hydrophilic–lipophilic balance in the self-assembly, DNA complexation and gene delivery capabilities. Organic and Biomolecular Chemistry, 2016, 14, 10037-10049.	1.5	19
159	The sp 2 -iminosugar glycolipid 1-dodecylsulfonyl-5 N ,6 O -oxomethylidenenojirimycin (DSO 2 -ONJ) as selective anti-inflammatory agent by modulation of hemeoxygenase-1 in Bv.2 microglial cells and retinal explants. Food and Chemical Toxicology, 2018, 111, 454-466.	1.8	19
160	Mechanocatalytic Depolymerization of Cellulose With Perfluorinated Sulfonic Acid Ionomers. Frontiers in Chemistry, 2018, 6, 74.	1.8	19
161	Cyclodextrin-Based Functional Glyconanomaterials. Nanomaterials, 2020, 10, 2517.	1.9	19
162	Revealing cooperative binding of polycationic cyclodextrins with DNA oligomers by capillary electrophoresis coupled to mass spectrometry. Analytica Chimica Acta, 2018, 1002, 70-81.	2.6	18

#	Article	IF	CITATIONS
163	Synthesis of polyfluoroalkyl sp2-iminosugar glycolipids and evaluation of their immunomodulatory properties towards anti-tumor, anti-leishmanial and anti-inflammatory therapies. European Journal of Medicinal Chemistry, 2019, 182, 111604.	2.6	18
164	Protonic reactivity of sucrose in anhydrous hydrogen fluoride. Carbohydrate Research, 1994, 251, 17-31.	1.1	17
165	Polyhydroxylated N-(thio)carbamoyl piperidines: nojirimycin-type glycomimetics with controlled anomeric configuration. Tetrahedron: Asymmetry, 1999, 10, 4271-4275.	1.8	17
166	Monodisperse Nanoparticles from Self-Assembling Amphiphilic Cyclodextrins: Modulable Tools for the Encapsulation and Controlled Release of Pharmaceuticals. Medicinal Chemistry, 2012, 8, 524-532.	0.7	17
167	Synthesis of glycosylaminothiazoles. Carbohydrate Research, 1986, 153, 318-324.	1.1	16
168	Nitrogen versus sulfur acylation in sugar thioureas: regioselectivity and conformational consequences. Tetrahedron: Asymmetry, 2000, 11, 1331-1341.	1.8	16
169	Spacer-Mediated Synthesis of Contra-Thermodynamic Spiroacetals:Â Stereoselective Synthesis ofC2-Symmetric Difructose Dianhydrides. Journal of Organic Chemistry, 2006, 71, 2257-2266.	1.7	16
170	Self-association of a naphthalene-capped-β-cyclodextrin through cooperative strong hydrophobic interactions. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 223, 25-36.	2.0	16
171	Stereoselective Synthesis of 2-Acetamido-1,2-dideoxyallonojirimycin (DAJNAc), a New Potent Hexosaminidase Inhibitor. Organic Letters, 2013, 15, 3638-3641.	2.4	16
172	Cyclodextrin-scaffolded glycotransporters for gene delivery. Pure and Applied Chemistry, 2013, 85, 1825-1845.	0.9	16
173	Fast and solvent free polymerization of carbohydrates induced by non-thermal atmospheric plasma. Green Chemistry, 2016, 18, 3013-3019.	4.6	16
174	Biophysics and protein corona analysis of Janus cyclodextrin-DNA nanocomplexes. Efficient cellular transfection on cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1737-1749.	1.1	16
175	Tuning the Topological Landscape of DNA–Cyclodextrin Nanocomplexes by Molecular Design. Chemistry - A European Journal, 2020, 26, 15259-15269.	1.7	16
176	Selective radical depolymerization of cellulose to glucose induced by high frequency ultrasound. Chemical Science, 2020, 11, 2664-2669.	3.7	16
177	The Reactivity of 1α-D-glucopyranosyl-D-fructose (trehalulose) in pyridinium poly(hydrogen fluoride) or anhydrous HF. New D-glucose D-fructose mixed dianhydrides. Tetrahedron Letters, 1992, 33, 7861-7864.	0.7	15
178	Rigid Spacer-Mediated Synthesis of Bis-Spiroketal Ring Systems:  Stereoselective Synthesis of Nonsymmetrical Spiro Disaccharides. Organic Letters, 2005, 7, 729-731.	2.4	15
179	Conformationally-locked N-glycosides: Exploiting long-range non-glycone interactions in the design of pharmacological chaperones for Gaucher disease. European Journal of Medicinal Chemistry, 2015, 90, 258-266.	2.6	15
180	Impact of Nonthermal Atmospheric Plasma on the Structure of Cellulose: Access to Soluble Branched Glucans. Chemistry - A European Journal, 2016, 22, 16522-16530.	1.7	15

#	Article	IF	CITATIONS
181	sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation inAvitro and of acute inflammation in mice inÂvivo. European Journal of Medicinal Chemistry, 2019, 169, 111-120.	2.6	15
182	Bicyclic Picomolar OGA Inhibitors Enable Chemoproteomic Mapping of Its Endogenous Post-translational Modifications. Journal of the American Chemical Society, 2022, 144, 832-844.	6.6	15
183	Glucosylenamines as glycosyl acceptors: synthesis of gentiobiosylenamines. Carbohydrate Research, 1992, 232, 47-57.	1.1	14
184	Sulfur Atom Participation in Thiooligosaccharide Chemistry: Synthesis of 1â€~-Thiotrehalulose and 1â€~-epi-Thiotrehalulose and Comparative Reactivity with the O-Linked Disaccharide Analogue, Trehaluloseâ€. Journal of Organic Chemistry, 1998, 63, 3572-3580.	1.7	14
185	Mannose-coated polydiacetylene (PDA)-based nanomicelles: synthesis, interaction with concanavalin A and application in the water solubilization and delivery of hydrophobic molecules. Journal of Materials Chemistry B, 2019, 7, 5930-5946.	2.9	14
186	Amplified Detection of Breast Cancer Autoantibodies Using MUC1-Based Tn Antigen Mimics. Journal of Medicinal Chemistry, 2020, 63, 8524-8533.	2.9	14
187	O-Acetyl Protection of 6-Aminoaldopyranosides and 1-Aminoalditols. Journal of Carbohydrate Chemistry, 1995, 14, 1133-1152.	0.4	13
188	Promoting helicity in carbohydrate-containing foldamers through long-range hydrogen bonds. Chemical Communications, 2007, , 831-833.	2.2	13
189	Efficient Use of Ellman Safety-Catch Linker for Solid-Phase Assisted Synthesis of Multivalent Glycoconjugates. ACS Combinatorial Science, 2007, 9, 339-342.	3.3	13
190	Conformationally-locked C-glycosides: tuning aglycone interactions for optimal chaperone behaviour in Gaucher fibroblasts. Organic and Biomolecular Chemistry, 2016, 14, 1473-1484.	1.5	13
191	Molecular determinants for cyclo-oligosaccharide-based nanoparticle-mediated effective siRNA transfection. Nanomedicine, 2017, 12, 1607-1621.	1.7	13
192	Anti-Inflammatory (M2) Response Is Induced by a sp2-Iminosugar Glycolipid Sulfoxide in Diabetic Retinopathy. Frontiers in Immunology, 2021, 12, 632132.	2.2	13
193	Synthesis and conformational properties of sugar amides and thioamides. Tetrahedron: Asymmetry, 1994, 5, 2313-2324.	1.8	12
194	1-Doexy-1-isothiocyanato-d-fructose as intermediate in syntheses of 1,3-O(S),N-heterocycles. Carbohydrate Research, 1994, 257, 127-135.	1.1	12
195	Carbohydrate-Derived Spiroketals:  Stereoselective Synthesis of Di-d-fructose Dianhydrides via Intramolecular Aglycon Delivery. Organic Letters, 2003, 5, 873-876.	2.4	12
196	Cyclodextrin-scaffolded amphiphilic aminoglucoside clusters: self-assembling and gene delivery capabilities. New Journal of Chemistry, 2014, 38, 5215-5225.	1.4	12
197	Cell uptake mechanisms of glycosylated cationic pDNA–cyclodextrin nanoparticles. RSC Advances, 2015, 5, 29135-29144.	1.7	12
198	Carbon Dioxide as a Traceless Caramelization Promotor: Preparation of Prebiotic Difructose Dianhydrides (DFAs)-Enriched Caramels from <scp>d</scp> -Fructose. Journal of Agricultural and Food Chemistry, 2017, 65, 6093-6099.	2.4	12

#	Article	IF	CITATIONS
199	Catalystâ€Free Synthesis of Alkylpolyglycosides Induced by Highâ€Frequency Ultrasound. ChemSusChem, 2018, 11, 2673-2676.	3.6	12
200	Multiply–linked cyclodextrin–aromatic hybrids: Caps, hinges and clips. Journal of Carbohydrate Chemistry, 2019, 38, 470-493.	0.4	12
201	Dynamic Control of the Self-Assembling Properties of Cyclodextrins by the Interplay of Aromatic and Host-Guest Interactions. Frontiers in Chemistry, 2019, 7, 72.	1.8	12
202	Nanoparticle-Delivered HIV Peptides to Dendritic Cells a Promising Approach to Generate a Therapeutic Vaccine. Pharmaceutics, 2020, 12, 656.	2.0	12
203	Structure of the Hafnia alvei strain PCM 1188 O-specific polysaccharide. Carbohydrate Research, 1995, 277, 245-255.	1.1	11
204	A general entry to linear, dendritic and branched thiourea-linked glycooligomers as new motifs for phosphate ester recognition in water. Chemical Communications, 2004, , 92-93.	2.2	11
205	Synthesis and glycosidase inhibitory activity of isourea-type bicyclic sp2-iminosugars related to galactonojirimycin and allonojirimycin. Tetrahedron, 2012, 68, 681-689.	1.0	11
206	A novel potential nanophototherapeutic based on the assembly of an amphiphilic cationic β-cyclodextrin and an anionic porphyrin. Journal of Porphyrins and Phthalocyanines, 2017, 21, 398-405.	0.4	11
207	Salt effects in reactions between ions of opposite charge. Transition Metal Chemistry, 1986, 11, 166-169.	0.7	10
208	Syntheses of partially protected d-galactopyranosylthioureas: New d-galactopyranosylimidazoline-2-thiones and d-galactopyranosylaminothiazoles. Carbohydrate Research, 1989, 193, 314-321.	1.1	10
209	Synthesis of N-Hetarylthiourea Derivatives of Carbohydrates. Journal of Carbohydrate Chemistry, 1990, 9, 837-851.	0.4	10
210	Synthesis of 6,7-dideoxy-7-isothiocyanatoheptoses: stable fully unprotected monosaccharide isothiocyanates. Carbohydrate Research, 1999, 323, 218-225.	1.1	10
211	Synthesis of β-galactosylamides as ligands of the peanut lectin. Insights into the recognition process. Carbohydrate Research, 2017, 443-444, 58-67.	1.1	10
212	Trehalose-based Siamese twin amphiphiles with tunable self-assembling, DNA nanocomplexing and gene delivery properties. Chemical Communications, 2019, 55, 8227-8230.	2.2	10
213	The Synthesis and Structure of Linear and Dendritic Thiourea-Linked Glycooligomers. European Journal of Organic Chemistry, 2006, 2006, 183-196.	1.2	9
214	Stereoselective synthesis of nonsymmetrical difructose dianhydrides from xylylene-tethered d-fructose precursors. Tetrahedron, 2008, 64, 2792-2800.	1.0	9
215	Influence of the Macroring Size on the Self-Association Thermodynamics of Cyclodextrins with a Double-Linked Naphthalene at the Secondary Face. Journal of Physical Chemistry B, 2013, 117, 5472-5485.	1.2	9
216	Sugarâ€Modified Foldamers as Conformationally Defined and Biologically Distinct Glycopeptide Mimics. Angewandte Chemie, 2013, 125, 10411-10416.	1.6	9

#	Article	IF	CITATIONS
217	Xylylene Clips for the Topology-Guided Control of the Inclusion and Self-Assembling Properties of Cyclodextrins. Journal of Organic Chemistry, 2018, 83, 5588-5597.	1.7	9
218	Thiol-ene "Click" Synthesis and Pharmacological Evaluation of C-Glycoside sp2-Iminosugar Glycolipids. Molecules, 2019, 24, 2882.	1.7	9
219	Novel Therapies for Orphan Diseases. ACS Medicinal Chemistry Letters, 2019, 10, 1020-1023.	1.3	9
220	Multivalent glycoligands with lectin/enzyme dual specificity: self-deliverable glycosidase regulators. Chemical Communications, 2019, 55, 12845-12848.	2.2	9
221	Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules, 2020, 21, 5173-5188.	2.6	9
222	Cyclodextrin-Based Nanostructure Efficiently Delivers siRNA to Glioblastoma Cells Preferentially via Macropinocytosis. International Journal of Molecular Sciences, 2020, 21, 9306.	1.8	9
223	Stereoselective Synthesis of Iminosugar 2-Deoxy(thio)glycosides from Bicyclic Iminoglycal Carbamates Promoted by Cerium(IV) Ammonium Nitrate and Cooperative BrÃ,nsted Acid-Type Organocatalysis. Journal of Organic Chemistry, 2020, 85, 5038-5047.	1.7	9
224	Difructose dianhydrides as synthetic intermediates. A synthesis of 3,6-anhydro–D-fructose. Tetrahedron: Asymmetry, 1994, 5, 2241-2250.	1.8	8
225	Tautomeric rearrangement of 3-deoxy-3-thioureidoaldoses: a novel synthetic route to carbohydrate mimics having a cyclic thiourea structure. Chemical Communications, 1996, , 2077-2078.	2.2	8
226	Structure and serological analysis of the Hafnia alvei 481-L O-specific polysaccharide containing phosphate in the backbone chain. Carbohydrate Research, 2006, 341, 2980-2985.	1.1	8
227	Oligosaccharide tagged β-cyclodextrins: synthesis and biological affinity towards Concanavalin A. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 9-14.	1.6	8
228	Glycotransporters for gene delivery. Carbohydrate Chemistry, 2012, , 338-375.	0.3	8
229	Microwave-assisted synthesis of prebiotic di-D-fructose dianhydride-enriched caramels. Food Chemistry, 2012, 134, 1527-1532.	4.2	8
230	Trehalose-based cyclodextrin analogs: cyclotrehalans (CTs). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 147-150.	1.6	7
231	Comparative study of CAD-CAE programs taking account of the opinions of students and teachers. Computer Applications in Engineering Education, 2013, 21, 641-656.	2.2	7
232	Synthesis of Prebiotic Caramels Catalyzed by Ion-Exchange Resin Particles: Kinetic Model for the Formation of Di- <scp>d</scp> -fructose Dianhydrides. Journal of Agricultural and Food Chemistry, 2018, 66, 1693-1700.	2.4	7
233	Competitive processes of a chromophore modified α-cyclodextrin in the presence of a fluorescence polarity sensitive probe. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 256, 42-51.	2.0	6
234	Harmonized tuning of nucleic acid and lectin binding properties with multivalent cyclodextrins for macrophage-selective gene delivery. RSC Advances, 2015, 5, 76464-76471.	1.7	6

#	Article	IF	CITATIONS
235	Deciphering of polycationic carbohydrate based non-viral gene delivery agents by ESI-LTQ-Orbitrap using CID/HCD pairwise tandem mass spectrometry. RSC Advances, 2016, 6, 78803-78817.	1.7	6
236	Toward a suitable structural analysis of gene delivery carrier based on polycationic carbohydrates by electron transfer dissociation tandem mass spectrometry. Analytica Chimica Acta, 2016, 948, 62-72.	2.6	6
237	Cyclodextrins for Pharmaceutical and Biomedical Applications. Monographs in Supramolecular Chemistry, 2013, , 94-139.	0.2	6
238	Cyclotrehalins: Cyclooligosaccharide Receptors Featuring a Hydrophobic Cavity. Angewandte Chemie, 2002, 114, 3826-3828.	1.6	5
239	Synthesis of Sugar Oxazolines by Intramolecular Ritter-Like Reaction ofd-Fructose Precursors. Synlett, 2004, 2004, 2230-2232.	1.0	5
240	Adsorption of difructose dianhydrides on hydrophobic Y-zeolites. Microporous and Mesoporous Materials, 2020, 292, 109673.	2.2	5
241	A Di-D-Fructose Dianhydride-Enriched Caramel Modulates Pig Fecal Microbiota Composition. Advances in Microbiology, 2014, 04, 242-251.	0.3	5
242	sp ² -Iminosugars targeting human lysosomal β-hexosaminidase as pharmacological chaperone candidates for late-onset Tay-Sachs disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1364-1374.	2.5	5
243	Stereoselective Synthesis of Difructose Dianhydrides by Use of the Xylylene Group as Stereodirecting Element in Spiroketalisation Reactions. European Journal of Organic Chemistry, 2011, 2011, 517-528.	1.2	4
244	Trifaceted Mickey Mouse Amphiphiles for Programmable Selfâ€Assembly, DNA Complexation and Organ‣elective Gene Delivery. Chemistry - A European Journal, 2021, 27, 9429-9438.	1.7	4
245	Synthesis of sp2-Iminosugar Selenoglycolipids as Multitarget Drug Candidates with Antiproliferative, Leishmanicidal and Anti-Inflammatory Properties. Molecules, 2021, 26, 7501.	1.7	4
246	Enhanced Gene Delivery Triggered by Dual pH/Redox Responsive Hostâ€Guest Dimerization of Cyclooligosaccharide Star Polycations. Macromolecular Rapid Communications, 2022, 43, e2200145.	2.0	4
247	Syntheses and spectral properties of βâ€iodoureas and 2â€aminoâ€4,4â€diphenylâ€2â€oxazolines. Journal of Heterocyclic Chemistry, 1991, 28, 777-780.	1.4	3
248	PREBIOTIC DIâ€Dâ€FRUCTOSE DIANHYDRIDEâ€ENRICHED CARAMELS: DEVELOPMENT OF BATCH PROCESS (1â€ OPTIMIZATION OF OPERATING CONDITIONS. Journal of Food Process Engineering, 2013, 36, 95-102.	fL)_AND 1.5	3
249	Tethered Blatter Radical for Molecular Grafting: Synthesis of 6-Hydroxyhexyloxy, Hydroxymethyl, and Bis(hydroxymethyl) Derivatives and Their Functionalization. Molecules, 2022, 27, 1176.	1.7	3
250	Improved Magneto-Microfluidic Separation of Nanoparticles through Formation of the β-Cyclodextrin–Curcumin Inclusion Complex. Langmuir, 2021, 37, 14345-14359.	1.6	3
251	Synthesis of Thiourea-Linked Glycooligomers that Mimic the Branching Patterns of Natural Oligosaccharides. Synthesis, 2007, 2007, 2545-2558.	1.2	2
252	Stereoselective Synthesis of Nojirimycin α- <i>C</i> -Glycosides from a Bicyclic Acyliminium Intermediate: A Convenient Entry to <i>N</i> , <i>C</i> -Biantennary Glycomimetics. ACS Omega, 0, , .	1.6	2

JOSE MANUEL GARCIA

0

#	Article	IF	CITATIONS
253	Synthesis of (1S,2S,3R,8S,8aR)-1,2,3,8-Tetrahydroxy-6-oxa-5-thioxoindolizidine: A Stable Reducing Swainsonine Analog with Controlled Anomeric Configuration. Synlett, 2003, 2003, 0341-0344.	1.0	1
254	sp2-lminosugars as chemical mimics for glycodrug design. , 2020, , 197-224.		1
255	Rational design of cell active C2-modified DGJ analogues for the inhibition of human α-galactosidase A (GALA). Organic and Biomolecular Chemistry, 2021, 19, 8057-8062.	1.5	1
256	Spacer-Mediated Synthesis of Bis-spiroketal Disaccharides: Nonsymmetrical Furanose-Pyranose Difructose Dianhydrides. Synlett, 2007, 2007, 2738-2742.	1.0	0
257	Neuronopathic Gaucher's disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Human Molecular Genetics, 2014, 23, 281-281.	1.4	0
258	Frontispiece: The Impact of Heteromultivalency in Lectin Recognition and Glycosidase Inhibition: An Integrated Mechanistic Study. Chemistry - A European Journal, 2017, 23, .	1.7	0
259	Screening sp-iminosugar†N-glycosides as pharmacological chaperone candidates for†α†mannosidosis: The effect of aglycone nature and valency. Molecular Genetics and Metabolism, 2019, 126, S58.	0.5	0
260	Tailoring the inhibitory versus chaperoning behavior of amphiphilic sp-iminosugar glycomimetics targetingâ€Î²-glucocerebrosidase: From micromolar to picomolar chaperones for Gaucher disease. Molecular Genetics and Metabolism, 2019, 126, S58.	0.5	0
261	Functional Glyconanomaterials. Nanomaterials, 2021, 11, 2482.	1.9	0

One Step Synthesis of Branched Cyclodextrins. , 1996, , 145-148.