
Colin Watts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/566269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macropinocytosis. Trends in Cell Biology, 1995, 5, 424-428.	3.6	702
2	CAPTURE AND PROCESSING OF EXOGENOUS ANTIGENS FOR PRESENTATION ON MHC MOLECULES. Annual Review of Immunology, 1997, 15, 821-850.	9.5	698
3	Enhanced Dendritic Cell Antigen Capture via Toll-Like Receptor-Induced Actin Remodeling. Science, 2004, 305, 1153-1157.	6.0	462
4	Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity, 1995, 3, 783-791.	6.6	375
5	Antigen processing and class II MHC peptide-loading compartments in human B-lymphoblastoid cells. Nature, 1994, 369, 147-151.	13.7	348
6	An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature, 1998, 396, 695-699.	13.7	344
7	Constitutive macropinocytosis allows TAP-dependent major histocompatibility compex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells. European Journal of Immunology, 1997, 27, 280-288.	1.6	321
8	Cloning, Isolation, and Characterization of Mammalian Legumain, an Asparaginyl Endopeptidase. Journal of Biological Chemistry, 1997, 272, 8090-8098.	1.6	314
9	Cycling of cell-surface MHC glycoproteins through primaquine-sensitive intracellular compartments. Nature, 1990, 346, 655-657.	13.7	251
10	Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Current Biology, 2000, 10, 839-848.	1.8	245
11	The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nature Immunology, 2004, 5, 685-692.	7.0	245
12	Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Current Biology, 2001, 11, 447-451.	1.8	208
13	Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nature Immunology, 2002, 3, 169-174.	7.0	200
14	Processed antigen binds to newly synthesized mhc class II molecules in antigen-specific B lymphocytes. Cell, 1991, 67, 105-116.	13.5	186
15	Irreversible association of peptides with class II MHC molecules in living cells. Nature, 1992, 357, 249-252.	13.7	172
16	Antigen processing in the endocytic compartment. Current Opinion in Immunology, 2001, 13, 26-31.	2.4	158
17	Control of Antigen Presentation by a Single Protease Cleavage Site. Immunity, 2000, 12, 391-398.	6.6	157
18	TLR signalling regulated antigen presentation in dendritic cells. Current Opinion in Immunology, 2010, 22, 124-130.	2.4	151

#	Article	IF	CITATIONS
19	Multistep Autoactivation of Asparaginyl Endopeptidase in Vitro and in Vivo. Journal of Biological Chemistry, 2003, 278, 38980-38990.	1.6	145
20	Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14. Journal of Cell Science, 2010, 123, 1427-1437.	1.2	133
21	The Structures of the HC Fragment of Tetanus Toxin with Carbohydrate Subunit Complexes Provide Insight into Ganglioside Binding. Journal of Biological Chemistry, 2000, 275, 8889-8894.	1.6	129
22	The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nature Immunology, 2007, 8, 1227-1235.	7.0	128
23	The endosome–lysosome pathway and information generation in the immune system. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 14-21.	1.1	125
24	Neuroprotective Actions of PIKE-L by Inhibition of SET Proteolytic Degradation by Asparagine Endopeptidase. Molecular Cell, 2008, 29, 665-678.	4.5	116
25	Diverse regulatory roles for lysosomal proteases in the immune response. European Journal of Immunology, 2009, 39, 2955-2965.	1.6	108
26	Professional presentation of antigen by activated human T cells. European Journal of Immunology, 1994, 24, 71-75.	1.6	106
27	Cystatin F is a cathepsin C-directed protease inhibitor regulated by proteolysis. EMBO Journal, 2008, 27, 499-508.	3.5	104
28	PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity, 2018, 49, 247-263.e7.	6.6	104
29	Asparagine Endopeptidase Can Initiate the Removal of the MHC Class II Invariant Chain Chaperone. Immunity, 2003, 18, 489-498.	6.6	103
30	Cystatin M/E Is a High Affinity Inhibitor of Cathepsin V and Cathepsin L by a Reactive Site That Is Distinct from the Legumain-binding Site. Journal of Biological Chemistry, 2006, 281, 15893-15899.	1.6	99
31	TLR ligand–induced podosome disassembly in dendritic cells is ADAM17 dependent. Journal of Cell Biology, 2008, 182, 993-1005.	2.3	78
32	Membrane assembly from purified components. II. Assembly of M13 procoat into liposomes reconstituted with purified leader peptidase. Cell, 1981, 25, 347-353.	13.5	75
33	A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug l-asparaginase. Journal of Clinical Investigation, 2009, 119, 1964-73.	3.9	69
34	Asparagine endopeptidase is required for normal kidney physiology and homeostasis. FASEB Journal, 2011, 25, 1606-1617.	0.2	68
35	Asparagine Deamidation Perturbs Antigen Presentation on Class II Major Histocompatibility Complex Molecules. Journal of Biological Chemistry, 2005, 280, 18498-18503.	1.6	66
36	Membrane assembly from purified components. I. Isolated M13 procoat does not require ribosomes or soluble proteins for processing by membranes. Cell, 1981, 25, 341-345.	13.5	63

#	Article	IF	CITATIONS
37	Asparaginyl endopeptidase: case history of a class II MHC compartment protease. Immunological Reviews, 2005, 207, 218-228.	2.8	62
38	Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Molecular and Biochemical Parasitology, 2005, 139, 197-203.	0.5	61
39	Destructive potential of the aspartyl protease cathepsin D in MHC class II-restricted antigen processing. European Journal of Immunology, 2005, 35, 3442-3451.	1.6	60
40	Disulfide bonds in merozoite surface protein 1 of the malaria parasite impede efficient antigen processing and affect thein vivoantibody response. European Journal of Immunology, 2004, 34, 639-648.	1.6	57
41	Proximal effects of Toll-like receptor activation in dendritic cells. Current Opinion in Immunology, 2007, 19, 73-78.	2.4	56
42	Distinct Intracellular Compartments Involved in Invariant Chain Degradation and Antigenic Peptide Loading of Major Histocompatibility Complex (MHC) Class II Molecules. Journal of Cell Biology, 1997, 139, 1433-1446.	2.3	55
43	Loss of beta2-integrin-mediated cytoskeletal linkage reprogrammes dendritic cells to a mature migratory phenotype. Nature Communications, 2014, 5, 5359.	5.8	52
44	Lysosomal protease deficiency or substrate overload induces an oxidative-stress mediated STAT3-dependent pathway of lysosomal homeostasis. Nature Communications, 2018, 9, 5343.	5.8	52
45	Membrane assembly: Posttranslational insertion of M13 procoat protein into E. coli membranes and its proteolytic conversion to coat protein in vitro. Cell, 1981, 24, 437-441.	13.5	50
46	Antibody modulation of antigen presentation: positive and negative effects on presentation of the tetanus toxin antigen via the murine B cell isoform of Fcl ³ RII. European Journal of Immunology, 2002, 32, 530-540.	1.6	50
47	Immunology Inside the gearbox of the dendritic cell. Nature, 1997, 388, 724-724.	13.7	47
48	Distinct Protease Requirements for Antigen Presentation In Vitro and In Vivo. Journal of Immunology, 2010, 184, 2423-2431.	0.4	46
49	Membrane ruffling, macropinocytosis and antigen presentation in the absence of gelsolin in murine dendritic cells. European Journal of Immunology, 1999, 29, 3450-3455.	1.6	45
50	Modulation by epitope-specific antibodies of class II MHC-restricted presentation of the tetanus toxin antigen. Immunological Reviews, 1998, 164, 11-16.	2.8	44
51	Chronic exposure of astrocytes to interferon-α reveals molecular changes related to Aicardi–GoutiÔres syndrome. Brain, 2013, 136, 245-258.	3.7	44
52	Glycosylation Directs Targeting and Activation of Cystatin F from Intracellular and Extracellular Sources. Traffic, 2009, 10, 425-437.	1.3	43
53	Novel Cell-Permeable Acyloxymethylketone Inhibitors of Asparaginyl Endopeptidase. Biological Chemistry, 2003, 384, 1239-46.	1.2	42
54	Antigen endocytosis and presentation mediated by human membrane IgG1 in the absence of the Igα/Igβ dimer. EMBO Journal, 1997, 16, 3842-3850.	3.5	41

#	Article	IF	CITATIONS
55	Structural Basis of Reduction-dependent Activation of Human Cystatin F. Journal of Biological Chemistry, 2006, 281, 16570-16575.	1.6	39
56	Regulation of cathepsins S and L by cystatin F during maturation of dendritic cells. European Journal of Cell Biology, 2012, 91, 391-401.	1.6	39
57	Phagocytosis and antigen presentation. Seminars in Immunology, 2001, 13, 373-379.	2.7	38
58	Antigen Traffic Pathways in Dendritic Cells. Traffic, 2000, 1, 312-317.	1.3	35
59	A critical role for beta2 integrins in podosome formation, dynamics and TLR-signaled disassembly in dendritic cells. Journal of Cell Science, 2014, 127, 4213-24.	1.2	35
60	Functional Early Endosomes Are Required for Maturation of Major Histocompatibility Complex Class II Molecules in Human B Lymphoblastoid Cells. Journal of Biological Chemistry, 1999, 274, 18049-18054.	1.6	34
61	Asparaginyl Endopeptidase (Legumain) Supports Human Th1 Induction via Cathepsin L-Mediated Intracellular C3 Activation. Frontiers in Immunology, 2018, 9, 2449.	2.2	34
62	A role for ARF6 in dendritic cell podosome formation and migration. European Journal of Immunology, 2008, 38, 818-828.	1.6	33
63	Cystatin F Ensures Eosinophil Survival by Regulating Granule Biogenesis. Immunity, 2016, 44, 795-806.	6.6	33
64	Reconstruction of a pathway of antigen processing and class II MHC peptide capture. EMBO Journal, 2007, 26, 2137-2147.	3.5	32
65	Location, location, location: identifying the neighborhoods of LPS signaling. Nature Immunology, 2008, 9, 343-345.	7.0	32
66	Internalization of Exogenous Cystatin F Supresses Cysteine Proteases and Induces the Accumulation of Single-chain Cathepsin L by Multiple Mechanisms. Journal of Biological Chemistry, 2011, 286, 42082-42090.	1.6	29
67	Application of a novel highly sensitive activity-based probe for detection of cathepsin G. Analytical Biochemistry, 2012, 421, 667-672.	1.1	27
68	IMMUNOLOGY: Antigen PresentationLosing Its Shine in the Absence of GILT. Science, 2001, 294, 1294-1295.	6.0	25
69	The Spontaneously Adhesive Leukocyte Function-associated Antigen-1 (LFA-1) Integrin in Effector T Cells Mediates Rapid Actin- and Calmodulin-dependent Adhesion Strengthening to Ligand under Shear Flow. Journal of Biological Chemistry, 2013, 288, 14698-14708.	1.6	25
70	Lysosomes and lysosomeâ€related organelles in immune responses. FEBS Open Bio, 2022, 12, 678-693.	1.0	23
71	Proteolytic cleavage of cellubrevin and vesicle-associated membrane protein (VAMP) by tetanus toxin does not impair insulin-stimulated glucose transport or GLUT4 translocation in rat adipocytes. Biochemical Journal, 1997, 321, 233-238.	1.7	22
72	3-Phosphoinositide-dependent Kinase 1 Deficiency Perturbs Toll-like Receptor Signaling Events and Actin Cytoskeleton Dynamics in Dendritic Cells. Journal of Biological Chemistry, 2008, 283, 929-939.	1.6	19

#	Article	IF	CITATIONS
73	A Multifunctional Protease Inhibitor To Regulate Endolysosomal Function. ACS Chemical Biology, 2011, 6, 1198-1204.	1.6	19
74	Antigen-processing organelles from DRB1*1101 and DRB1*1104 B cell lines display a differential degradation activity. European Journal of Immunology, 1995, 25, 30-36.	1.6	16
75	IMMUNOLOGY: The Bell Tolls for Phagosome Maturation. Science, 2004, 304, 976-977.	6.0	16
76	Antigen overview. Current Opinion in Immunology, 1998, 10, 57-58.	2.4	15
77	Structural and Functional Basis for p38-MK2-Activated Rsk Signaling in Toll-Like Receptor-Stimulated Dendritic Cells. Molecular and Cellular Biology, 2015, 35, 132-140.	1.1	14
78	A combination of SILAC and nucleotide acyl phosphate labelling reveals unexpected targets of the Rsk inhibitor BI-D1870. Bioscience Reports, 2014, 34, .	1.1	13
79	The PDK1–Rsk Signaling Pathway Controls Langerhans Cell Proliferation and Patterning. Journal of Immunology, 2015, 195, 4264-4272.	0.4	13
80	The characterisation of two partially purified systems for Na+-dependent amino acid transport. Biochimica Et Biophysica Acta - Biomembranes, 1980, 602, 446-459.	1.4	12
81	Peptide partners call the tune. Nature, 1994, 371, 198-199.	13.7	12
82	Phagosome Neutrality in Host Defense. Cell, 2006, 126, 17-19.	13.5	11
83	Dendritic cells spill the beans. Nature Cell Biology, 1999, 1, E152-E154.	4.6	9
84	Partial separation of a sodium-dependent transport system for amino acids in avian erythrocyte membranes. FEBS Letters, 1978, 94, 241-244.	1.3	8
85	Discovery and Differential Processing of HLA Class II-Restricted Minor Histocompatibility Antigen LB-PIP4K2A-1S and Its Allelic Variant by Asparagine Endopeptidase. Frontiers in Immunology, 2020, 11, 381.	2.2	7
86	The formation of vesicles retaining sodium-dependent transport systems for amino acids from protein-depleted membranes of pigeon erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 1980, 602, 460-466.	1.4	5
87	What the papers say: Membrane recycling and antigen presentation. BioEssays, 1986, 4, 265-267.	1.2	4
88	Phagocytosis: How the Phagosome Became the Phag-ER-some. Current Biology, 2002, 12, R666-R668.	1.8	4
89	Roles for asparagine endopeptidase in class II MHC-restricted antigen processing. Biochemical Society Symposia, 2003, 70, 31-38.	2.7	4
90	Membrane ruffling, macropinocytosis and antigen presentation in the absence of gelsolin in murine dendritic cells. , 1999, 29, 3450.		3

#	Article	IF	Citations
91	[13] Analysis of M13 procoat assembly into membranes in vitro. Methods in Enzymology, 1983, 97, 130-138.	0.4	2
92	Class II MHC. Cell, 2004, 117, 558-559.	13.5	2
93	Sexist ads. Nature, 1986, 321, 106-106.	13.7	1
94	Isolation and expression of cDNA clones for a rat liver asialoglycoprotein receptor. Bioscience Reports, 1986, 6, 527-534.	1.1	0
95	Antigen processing and class II MHC-restricted antigen presentation in Blymphocytes. Biochemical Society Transactions, 1991, 19, 263-265.	1.6	Ο
96	The Functional Relationship between Preferential Use of Newly Synthesized Class II Molecules and Their Stable Association with Peptides. , 1992, , 71-74.		0
97	Antigen Processing in B Lymphocytes. , 1992, , 335-340.		0
98	Origin and Processing of MHC Class II Ligands. , 2016, , 241-246.		0