Tanja Junkers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5662406/publications.pdf

Version: 2024-02-01

216 papers

8,528 citations

41258 49 h-index 79 g-index

222 all docs 222 docs citations

times ranked

222

4926 citing authors

#	Article	IF	CITATIONS
1	Concurrent control over sequence and dispersity in multiblock copolymers. Nature Chemistry, 2022, 14, 304-312.	6.6	58
2	Solventâ€Independent Molecular Weight Determination of Polymers Based on a Truly Universal Calibration. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
3	One-pot multifunctional polyesters by continuous flow organocatalysed ring-opening polymerisation for targeted and tunable materials design. Polymer Chemistry, 2022, 13, 1387-1393.	1.9	5
4	Pulsed laser polymerization–size exclusion chromatography investigations into backbiting in ethylhexyl acrylate polymerization. Polymer Chemistry, 2022, 13, 2019-2025.	1.9	3
5	Amphiphilic conjugated block copolymers as NIR-bioimaging probes. Polymer Chemistry, 2022, 13, 2057-2064.	1.9	О
6	Introduction to the themed collection on sustainable polymers. Polymer Chemistry, 2022, 13, 1785-1786.	1.9	1
7	Update and critical reanalysis of IUPAC benchmark propagation rate coefficient data. Polymer Chemistry, 2022, 13, 1891-1900.	1.9	22
8	Rapid Kinetic Screening via Transient <i>Timesweep</i> Experiments in Continuous Flow Reactors. Chemistry Methods, 2022, 2, .	1.8	7
9	The effects of molecular weight dispersity on block copolymer self-assembly. Polymer Chemistry, 2022, 13, 3444-3450.	1.9	7
10	Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC., 2022, 1, 519-526.		13
11	PEGylating poly(p-phenylene vinylene)-based bioimaging nanoprobes. Journal of Colloid and Interface Science, 2021, 581, 566-575.	5.0	4
12	Direct synthesis of light-emitting triblock copolymers from RAFT polymerization. Polymer Chemistry, 2021, 12, 216-225.	1.9	4
13	A machine-readable online database for rate coefficients in radical polymerization. Polymer Chemistry, 2021, 12, 3688-3692.	1.9	7
14	Amino acid acrylamide mimics: creation of a consistent monomer library and characterization of their polymerization behaviour. Polymer Chemistry, 2021, 12, 5037-5047.	1.9	2
15	The block copolymer shuffle in size exclusion chromatography: the intrinsic problem with using elugrams to determine chain extension success. Polymer Chemistry, 2021, 12, 2522-2531.	1.9	37
16	Micelle Purification in Continuous Flow via Inline Dialysis. Macromolecules, 2021, 54, 3865-3872.	2.2	8
17	Accelerated Polypeptide Synthesis via <i>N</i> â€Carboxyanhydride Ring Opening Polymerization in Continuous Flow. Macromolecular Rapid Communications, 2020, 41, e2000071.	2.0	8
18	Photo-induced copper-mediated (meth)acrylate polymerization towards graphene oxide and reduced graphene oxide modification. European Polymer Journal, 2020, 134, 109810.	2.6	5

#	Article	IF	Citations
19	Flash-synthesis of low dispersity PPV <i>via</i> anionic polymerization in continuous flow reactors and block copolymer synthesis. Polymer Chemistry, 2020, 11, 7094-7103.	1.9	4
20	Telescoped continuous flow synthesis of phenyl acrylamide. Journal of Flow Chemistry, 2020, 10, 673-679.	1.2	2
21	Polymers in the Blender. Macromolecular Chemistry and Physics, 2020, 221, 2000234.	1.1	21
22	Simple and secure data encryption via molecular weight distribution fingerprints. Polymer Chemistry, 2020, 11, 6463-6470.	1.9	10
23	Tunable thermoresponsive βâ€cyclodextrinâ€based star polymers. Journal of Polymer Science, 2020, 58, 3402-3410.	2.0	6
24	Room temperature synthesis of block copolymer nano-objects with different morphologies <i>via</i> ultrasound initiated RAFT polymerization-induced self-assembly (sono-RAFT-PISA). Polymer Chemistry, 2020, 11, 3564-3572.	1.9	32
25	Online tracing of molecular weight evolution during radical polymerization <i>via</i> high-resolution FlowNMR spectroscopy. Polymer Chemistry, 2020, 11, 3546-3550.	1.9	25
26	Tailoring Polymer Dispersity by RAFT Polymerization: A Versatile Approach. CheM, 2020, 6, 1340-1352.	5.8	125
27	Polymer Synthesis in Continuous Flow Reactors. Progress in Polymer Science, 2020, 107, 101256.	11.8	87
28	Designing molecular weight distributions of arbitrary shape with selectable average molecular weight and dispersity. European Polymer Journal, 2020, 134, 109834.	2.6	19
29	Muconic acid isomers as platform chemicals and monomers in the biobased economy. Green Chemistry, 2020, 22, 1517-1541.	4.6	73
30	Sequence-defined nucleobase containing oligomers <i>via</i> reversible addition–fragmentation chain transfer single monomer addition. Polymer Chemistry, 2020, 11, 2027-2033.	1.9	9
31	Exploring the Photochemical Reactivity of Multifunctional Photocaged Dienes in Continuous Flow. ChemPhotoChem, 2019, 3, 1146-1152.	1.5	4
32	Deconstructing Oligomer Distributions: Discrete Species and Artificial Distributions. Angewandte Chemie, 2019, 131, 14007-14011.	1.6	12
33	Deconstructing Oligomer Distributions: Discrete Species and Artificial Distributions. Angewandte Chemie - International Edition, 2019, 58, 13869-13873.	7.2	22
34	Kinetic Control of Aggregation Shape in Micellar Selfâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 13799-13802.	7.2	18
35	Magnetic Force Microscopy of in a Polymer Matrix Embedded Single Magnetic Nanoparticles (Phys.) Tj ETQq1 1	0.784314	rgBT /Overlo
36	Automated Polymer Synthesis Platform for Integrated Conversion Targeting Based on Inline Benchtop NMR. ACS Macro Letters, 2019, 8, 1437-1441.	2.3	55

#	Article	lF	CITATIONS
37	Kinetic Control of Aggregation Shape in Micellar Selfâ€Assembly. Angewandte Chemie, 2019, 131, 13937-13940.	1.6	1
38	Influence of dielectric layer thickness and roughness on topographic effects in magnetic force microscopy. Beilstein Journal of Nanotechnology, 2019, 10, 1056-1064.	1.5	5
39	Quasi-monodisperse polymer libraries <i>via</i> flash column chromatography: correlating dispersity with glass transition. Polymer Chemistry, 2019, 10, 679-682.	1.9	15
40	Particle Size Control in Miniemulsion Polymerization via Membrane Emulsification. Macromolecules, 2019, 52, 4492-4499.	2.2	27
41	Photoiniferter surface grafting of poly(methyl acrylate) using xanthates. Journal of Polymer Science Part A, 2019, 57, 2002-2007.	2.5	4
42	Scalable Aqueous Reversible Addition–Fragmentation Chain Transfer Photopolymerization-Induced Self-Assembly of Acrylamides for Direct Synthesis of Polymer Nanoparticles for Potential Drug Delivery Applications. ACS Applied Polymer Materials, 2019, 1, 1251-1256.	2.0	35
43	Von Peptiden lernen: eine Strategie fÃ⅓r das Design funktionaler PrÃ⊠sionspolymerâ€Sequenzen. Angewandte Chemie, 2019, 131, 10858-10863.	1.6	4
44	Learning from Peptides to Access Functional Precision Polymer Sequences. Angewandte Chemie - International Edition, 2019, 58, 10747-10751.	7.2	35
45	Laser-Grafted Molecularly Imprinted Polymers for the Detection of Histamine from Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules, 2019, 52, 2304-2313.	2.2	27
46	Alcohol-based PISA in batch and flow: exploring the role of photoinitiators. Polymer Chemistry, 2019, 10, 2406-2414.	1.9	51
47	Scalable Synthesis of Sequenceâ€Defined Oligomers via Photoflow Chemistry. ChemPhotoChem, 2019, 3, 225-228.	1.5	23
48	Rapid Oxygen Tolerant Aqueous RAFT Photopolymerization in Continuous Flow Reactors. Macromolecules, 2019, 52, 1609-1619.	2.2	59
49	Continuous flow synthesis of core cross-linked star polymers <i>via</i> photo-induced copper mediated polymerization. Polymer Chemistry, 2019, 10, 1591-1598.	1.9	19
50	A predictive framework for mixing low dispersity polymer samples to design custom molecular weight distributions. Polymer Chemistry, 2019, 10, 5721-5725.	1.9	41
51	Muconic acid esters as bio-based acrylate mimics. Polymer Chemistry, 2019, 10, 5555-5563.	1.9	16
52	Elucidation of the properties of discrete oligo(meth)acrylates. Polymer Chemistry, 2019, 10, 6540-6544.	1.9	9
53	Comprehensive control over molecular weight distributions through automated polymerizations. Polymer Chemistry, 2019, 10, 6315-6323.	1.9	45
54	Magnetic Force Microscopy of in a Polymer Matrix Embedded Single Magnetic Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800753.	0.8	11

#	Article	IF	CITATIONS
55	Precise Polymer Synthesis by Autonomous Selfâ€Optimizing Flow Reactors. Angewandte Chemie - International Edition, 2019, 58, 3183-3187.	7.2	111
56	Precise Polymer Synthesis by Autonomous Selfâ€Optimizing Flow Reactors. Angewandte Chemie, 2019, 131, 3215-3219.	1.6	11
57	Reversible Surface Engineering via Nitrone-Mediated Radical Coupling. Langmuir, 2018, 34, 3244-3255.	1.6	3
58	2D laser lithography on silicon substrates <i>via</i> photoinduced copper-mediated radical polymerization. Chemical Communications, 2018, 54, 751-754.	2.2	12
59	Direct synthesis of acrylate monomers in heterogeneous continuous flow processes. Reaction Chemistry and Engineering, 2018, 3, 41-47.	1.9	7
60	Mapping Dithiobenzoate-Mediated RAFT Polymerization Products via Online Microreactor/Mass Spectrometry Monitoring. Polymers, 2018, 10, 1228.	2.0	7
61	Understanding electrostatic and magnetic forces in magnetic force microscopy: towards single superparamagnetic nanoparticle resolution. Journal of Physics Communications, 2018, 2, 075019.	0.5	21
62	Synthesis of Functional Polymer Particles from Morita–Baylis–Hillman Polymerization. Macromolecular Rapid Communications, 2018, 39, e1800678.	2.0	4
63	Ultraschnelle Photoâ€RAFTâ€Blockcopolymerisation von Isopren und Styrol im kontinuierlichen Flussreaktor. Angewandte Chemie, 2018, 130, 14456-14460.	1.6	4
64	Sequence-definition from controlled polymerization: the next generation of materials. Polymer Chemistry, 2018, 9, 4692-4705.	1.9	124
65	Ultrafast PhotoRAFT Block Copolymerization of Isoprene and Styrene Facilitated through Continuousâ€Flow Operation. Angewandte Chemie - International Edition, 2018, 57, 14260-14264.	7.2	53
66	Size-dependent properties of functional PPV-based conjugated polymer nanoparticles for bioimaging. Colloids and Surfaces B: Biointerfaces, 2018, 169, 494-501.	2.5	14
67	Visible Light-Mediated Polymerization-Induced Self-Assembly Using Continuous Flow Reactors. Macromolecules, 2018, 51, 5165-5172.	2.2	105
68	Micro-patterned molecularly imprinted polymer structures on functionalized diamond-coated substrates for testosterone detection. Biosensors and Bioelectronics, 2018, 118, 58-65.	5.3	32
69	Elements of RAFT Navigation. ACS Symposium Series, 2018, , 77-103.	0.5	21
70	Controlled Reversible Deactivation Radical Photopolymerization. RSC Polymer Chemistry Series, 2018, , 244-273.	0.1	5
71	Kinetic Monte Carlo Generation of Complete Electron Spray Ionization Mass Spectra for Acrylate Macromonomer Synthesis. Macromolecules, 2017, 50, 2625-2636.	2.2	45
72	Facile photo-flow synthesis of branched poly(butyl acrylate)s. Reaction Chemistry and Engineering, 2017, 2, 479-486.	1.9	20

#	Article	IF	Citations
73	The Kinetics of <i>n</i> à€Butyl Acrylate Radical Polymerization Revealed in a Single Experiment by Real Time Onâ€line Mass Spectrometry Monitoring. Macromolecular Reaction Engineering, 2017, 11, 1700016.	0.9	34
74	High-throughput polymer screening in microreactors: boosting the Passerini three component reaction. Polymer Chemistry, 2017, 8, 2972-2978.	1.9	30
75	Photo-induced ring-closure <i>via</i> a looped flow reactor. Reaction Chemistry and Engineering, 2017, 2, 826-829.	1.9	13
76	Organocatalyzed Photoâ€Atom Transfer Radical Polymerization of Methacrylic Acid in Continuous Flow and Surface Grafting. Macromolecular Rapid Communications, 2017, 38, 1700423.	2.0	39
77	Online Monitoring of Polymerizations: Current Status. European Journal of Organic Chemistry, 2017, 2017, 6474-6482.	1.2	61
78	Visible light-induced iniferter polymerization of methacrylates enhanced by continuous flow. Polymer Chemistry, 2017, 8, 6496-6505.	1.9	77
79	Versatile Approach for the Synthesis of Sequence-Defined Monodisperse 18- and 20-mer Oligoacrylates. ACS Macro Letters, 2017, 6, 743-747.	2.3	40
80	Precision Polymer Design in Microstructured Flow Reactors: Improved Control and First Upscale at Once. Macromolecular Chemistry and Physics, 2017, 218, 1600421.	1.1	63
81	Critically Evaluated Rate Coefficients in Radical Polymerization – 8. Propagation Rate Coefficients for Vinyl Acetate in Bulk. Macromolecular Chemistry and Physics, 2017, 218, 1600357.	1.1	24
82	Precise macromolecular engineering via continuous-flow synthesis techniques. Journal of Flow Chemistry, 2017, 7, 106-110.	1.2	33
83	RAFT multiblock reactor telescoping: from monomers to tetrablock copolymers in a continuous multistage reactor cascade. Polymer Chemistry, 2017, 8, 3815-3824.	1.9	48
84	Molecularly Imprinted Polymers. , 2016, , 253-271.		2
85	Macromol. Rapid Commun. 2/2016. Macromolecular Rapid Communications, 2016, 37, 196-196.	2.0	0
86	UVâ€Induced [2+2] Graftingâ€To Reactions for Polymer Modification of Cellulose. Macromolecular Rapid Communications, 2016, 37, 174-180.	2.0	8
87	Determining Freeâ€Radical Propagation Rate Coefficients with Highâ€Frequency Lasers: Current Status and Future Perspectives. Macromolecular Rapid Communications, 2016, 37, 123-134.	2.0	29
88	Kilohertz Pulsedâ€Laserâ€Polymerization: Simultaneous Determination of Backbiting, Secondary, and Tertiary Radical Propagation Rate Coefficients for <i>tert</i> hacromolecular Rapid Communications, 2016, 37, 781-787.	2.0	22
89	Photo-induced copper-mediated acrylate polymerization in continuous-flow reactors. Journal of Flow Chemistry, 2016, 6, 260-267.	1.2	21
90	Acid-Induced Room Temperature RAFT Polymerization: Synthesis and Mechanistic Insights. Macromolecules, 2016, 49, 4124-4135.	2.2	20

#	Article	IF	CITATIONS
91	Continuous Microflow PhotoRAFT Polymerization. Macromolecules, 2016, 49, 6888-6895.	2.2	54
92	Photomediated controlled radical polymerization. Progress in Polymer Science, 2016, 62, 73-125.	11.8	537
93	Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery. Biomacromolecules, 2016, 17, 4086-4094.	2.6	28
94	PPV-Based Conjugated Polymer Nanoparticles as a Versatile Bioimaging Probe: A Closer Look at the Inherent Optical Properties and Nanoparticle–Cell Interactions. Biomacromolecules, 2016, 17, 2562-2571.	2.6	47
95	Modifiable poly(<i>p</i> -phenylene vinylene) copolymers towards functional conjugated materials. Polymer Chemistry, 2016, 7, 4771-4781.	1.9	6
96	Controlled/living polymerization towards functional poly($\langle i \rangle p \langle i \rangle$ -phenylene vinylene) materials. Polymer Chemistry, 2016, 7, 1355-1367.	1.9	34
97	Improved Molecular Imprinting Based on Colloidal Particles Made from Miniemulsion: A Case Study on Testosterone and Its Structural Analogues. Macromolecules, 2016, 49, 2559-2567.	2.2	23
98	Efficient multiblock star polymer synthesis from photo-induced copper-mediated polymerization with up to 21 arms. Polymer Chemistry, 2016, 7, 2720-2727.	1.9	63
99	Anionic flow polymerizations toward functional polyphosphoesters in microreactors: Polymerization and UV-modification. European Polymer Journal, 2016, 80, 208-218.	2.6	33
100	Continuous photoflow synthesis of precision polymers. Reaction Chemistry and Engineering, 2016, 1, 60-64.	1.9	92
101	Photoinduced Acrylate Polymerization: Unexpected Reduction in Chain Branching. Macromolecular Rapid Communications, 2015, 36, 1479-1485.	2.0	9
102	Continuous Synthesis and Thermal Elimination of Sulfinylâ€Route Poly(<i>p</i> a€Phenylene Vinylene) in Consecutive Flow Reactions. Chemical Engineering and Technology, 2015, 38, 1749-1757.	0.9	10
103	Macromol. Rapid Commun. 16/2015. Macromolecular Rapid Communications, 2015, 36, 1532-1532.	2.0	0
104	PPV Polymerization through the Gilch Route: Diradical Character of Monomers. Chemistry - A European Journal, 2015, 21, 19176-19185.	1.7	9
105	Solvent Effects on <i>k</i> _p in Organic Media?: Statement to the Response. Macromolecular Rapid Communications, 2015, 36, 1984-1986.	2.0	7
106	Macromol. Rapid Commun. 18/2015. Macromolecular Rapid Communications, 2015, 36, 1696-1696.	2.0	0
107	Surface Grafting via Photoâ€Induced Copperâ€Mediated Radical Polymerization at Extremely Low Catalyst Concentrations. Macromolecular Rapid Communications, 2015, 36, 1681-1686.	2.0	50
108	Improved Livingness and Control over Branching in RAFT Polymerization of Acrylates: Could Microflow Synthesis Make the Difference?. Macromolecular Rapid Communications, 2015, 36, 2149-2155.	2.0	67

#	Article	IF	CITATIONS
109	Facile Synthesis of Well-Defined MDMO-PPV Containing (Tri)Blockâ€"Copolymers via Controlled Radical Polymerization and CuAAC Conjugation. Polymers, 2015, 7, 418-452.	2.0	14
110	Combustion deposition of MoO3 films: from fundamentals to OPV applications. RSC Advances, 2015, 5, 91349-91362.	1.7	17
111	Watching polymers grow: real time monitoring of polymerizations <i>via</i> an on-line ESI-MS/microreactor coupling. Chemical Communications, 2015, 51, 4611-4614.	2.2	76
112	[2+2] Photo-cycloadditions for polymer modification and surface decoration. European Polymer Journal, 2015, 62, 273-280.	2.6	40
113	Continuous poly(2-oxazoline) triblock copolymer synthesis in a microfluidic reactor cascade. Chemical Communications, 2015, 51, 11701-11704.	2.2	46
114	Efficiency assessment of single unit monomer insertion reactions for monomer sequence control: kinetic simulations and experimental observations. Polymer Chemistry, 2015, 6, 5752-5765.	1.9	61
115	Synthesis of sequence-defined acrylate oligomers <i>via</i> photo-induced copper-mediated radical monomer insertions. Chemical Science, 2015, 6, 5753-5761.	3.7	90
116	Improved photo-induced cobalt-mediated radical polymerization in continuous flow photoreactors. Polymer Chemistry, 2015, 6, 3847-3857.	1.9	58
117	Synthesis of degradable multi-segmented polymers <i>via</i> Michael-addition thiol–ene step-growth polymerization. RSC Advances, 2015, 5, 81920-81932.	1.7	17
118	Improved Mechanistic Insights into Radical Sulfinyl Precursor MDMO-PPV Synthesis by Combining Microflow Technology and Computer Simulations. Macromolecules, 2015, 48, 8294-8306.	2.2	16
119	Ligand switch in photoinduced copper-mediated polymerization: synthesis of methacrylate–acrylate block copolymers. Polymer Chemistry, 2015, 6, 6488-6497.	1.9	44
120	Interfacial thiol–isocyanate reactions for functional nanocarriers: a facile route towards tunable morphologies and hydrophilic payload encapsulation. Chemical Communications, 2015, 51, 15858-15861.	2.2	39
121	Chapter 6. Recent Developments in Nitroxide Mediated Polymerization. RSC Polymer Chemistry Series, 2015, , 264-304.	0.1	3
122	Solvent Effects on Acrylate <i>k</i> _p in Organic Media?—A Systematic PLP–SEC Study. Macromolecular Rapid Communications, 2014, 35, 2029-2037.	2.0	26
123	Direct Access to Dithiobenzoate RAFT Agent Fragmentation Rate Coefficients by ESR Spinâ€Trapping. Macromolecular Rapid Communications, 2014, 35, 2023-2028.	2.0	21
124	Critically evaluated rate coefficients in radical polymerization $\hat{a}\in$ 7. Secondary-radical propagation rate coefficients for methyl acrylate in the bulk. Polymer Chemistry, 2014, 5, 204-212.	1.9	118
125	Synthesis of PPV-b-PEG block copolymers via CuAAC conjugation. European Polymer Journal, 2014, 55, 114-122.	2.6	6
126	Polymer end group modifications and polymer conjugations via "click―chemistry employing microreactor technology. Journal of Polymer Science Part A, 2014, 52, 1263-1274.	2.5	32

#	Article	IF	Citations
127	Facile design of degradable poly($\hat{l}^2 \hat{a} \in \hat{t}$ hioester)s with tunable structure and functionality. Journal of Polymer Science Part A, 2014, 52, 178-187.	2.5	32
128	Photo-induced copper-mediated polymerization of methyl acrylate in continuous flow reactors. Polymer Chemistry, 2014, 5, 3053-3060.	1.9	152
129	Alpha and Omega: Importance of the Nonliving Chain End in RAFT Multiblock Copolymerization. Macromolecules, 2014, 47, 5051-5059.	2.2	33
130	Synthesis of degradable poly(methyl methacrylate) star polymers via RAFT copolymerization with cyclic ketene acetals. Journal of Polymer Science Part A, 2014, 52, 1633-1641.	2.5	23
131	Fast and Efficient [2 + 2] UV Cycloaddition for Polymer Modification via Flow Synthesis. Macromolecules, 2014, 47, 5578-5585.	2.2	34
132	Thermal detection of histamine with a graphene oxide based molecularly imprinted polymer platform prepared by reversible addition–fragmentation chain transfer polymerization. Sensors and Actuators B: Chemical, 2014, 203, 527-535.	4.0	59
133	Photoinduced Sequence-Controlled Copper-Mediated Polymerization: Synthesis of Decablock Copolymers. ACS Macro Letters, 2014, 3, 732-737.	2.3	102
134	Nitroneâ€Mediated Radical Coupling of Polymers Derived from Reverse Iodineâ€Transfer Polymerization. Macromolecular Chemistry and Physics, 2014, 215, 1991-2000.	1.1	3
135	Cross-linked degradable poly(\hat{l}^2 -thioester) networks via amine-catalyzed thiol-ene click polymerization. Polymer, 2014, 55, 3525-3532.	1.8	22
136	Efficient [2+2] photocycloadditions under equimolar conditions by employing a continuous UV-flow reactor. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 259, 41-46.	2.0	29
137	Synthesis of well-defined PPV containing block polymers with precise endgroup control by a dual-initiator strategy. Polymer Chemistry, 2013, 4, 3471-3479.	1.9	17
138	UV-induced functionalization of poly(divinylbenzene) nanoparticles <i>via</i> efficient [2 + 2]-photocycloadditions. Polymer Chemistry, 2013, 4, 4010-4016.	1.9	15
139	Precision synthesis of acrylate multiblock copolymers from consecutive microreactor RAFT polymerizations. Journal of Polymer Science Part A, 2013, 51, 2366-2374.	2.5	78
140	Synthesis of sequence controlled acrylate oligomers <i>via</i> consecutive RAFT monomer additions. Chemical Communications, 2013, 49, 10358-10360.	2.2	108
141	Transfer Reactions in Phenyl Carbamate Ethyl Acrylate Polymerizations. Macromolecular Chemistry and Physics, 2013, 214, 236-245.	1.1	4
142	Anionic PPV polymerization from the sulfinyl precursor route: Block copolymer formation from sequential addition of monomers. Polymer, 2013, 54, 1298-1304.	1.8	16
143	Synthesis of Macromonomers from High-Temperature Activation of Nitroxide Mediated Polymerization (NMP)-made Polyacrylates. Macromolecules, 2013, 46, 3324-3331.	2.2	30
144	Straightforward Synthesis of Symmetrical Multiblock Copolymers by Simultaneous Block Extension and Radical Coupling Reactions. Macromolecules, 2013, 46, 8922-8931.	2.2	11

#	Article	IF	CITATIONS
145	Enhanced Spin Capturing Polymerization of Ethylene. Macromolecules, 2013, 46, 29-36.	2.2	13
146	Synthesis of MDMOâ€PPV Nanoparticles Via In Situ Sulfinyl Precursor Route Polymerization in Miniemulsion. Macromolecular Chemistry and Physics, 2013, 214, 1859-1864.	1.1	4
147	Synthesis of poly(<i>p</i> phenylene vinylene) materials <i>via</i> the precursor routes. Polymer Chemistry, 2012, 3, 275-285.	1.9	78
148	Synthesis of (Bio)â€Degradable Poly(<i>β</i> àâ€thioester)s via Amine Catalyzed Thiolâ^Ene Click Polymerization. Macromolecular Chemistry and Physics, 2012, 213, 2611-2617.	1.1	47
149	Controlled synthesis of MDMO-PPV and block copolymers made thereof. Polymer Chemistry, 2012, 3, 1722-1725.	1.9	14
150	Macromonomers from AGET Activation of Poly(<i>n</i> -butyl acrylate) Precursors: Radical Transfer Pathways and Midchain Radical Migration. Macromolecules, 2012, 45, 6850-6856.	2.2	31
151	Singleâ€pulse pulsed laser polymerization–electron paramagnetic resonance investigations into the termination kinetics of <i>n</i> à€butyl acrylate macromonomers. Journal of Polymer Science Part A, 2012, 50, 4740-4748.	2.5	16
152	Use of a continuous-flow microreactor for thiol–ene functionalization of RAFT-derived poly(butyl) Tj ETQq0 0	0 rgBJ /Ov	erlggk 10 Tf 5
153	A qualitative and quantitative postâ€mortem analysis: Studying freeâ€radical initiation processes via soft ionization mass spectrometry. Journal of Polymer Science Part A, 2012, 50, 2739-2757.	2.5	22
154	Thermally responsive core–shell microparticles and cross-linked networks based on nitrone chemistry. Polymer Chemistry, 2012, 3, 2266-2276.	1.9	13
155	Enhanced Spin-capturing Polymerization and Radical Coupling Mediated by Cyclic Nitrones. Australian Journal of Chemistry, 2012, 65, 1110.	0.5	14
156	Synthesis of star and H-shape polymers <i>via</i> a combination of cobalt-mediated radical polymerization and nitrone-mediated radical coupling reactions. Polymer Chemistry, 2012, 3, 135-147.	1.9	40
157	Thioketoneâ€Mediated Polymerization with Dithiobenzoates: Proof for the Existence of Stable Radical Intermediates in RAFT Polymerization. Macromolecular Rapid Communications, 2012, 33, 984-990.	2.0	21
158	Investigation of the End Group Fidelity at High Conversion during Nitroxide-Mediated Acrylate Polymerizations. Macromolecules, 2012, 45, 5371-5378.	2.2	23
159	Interpolymer radical coupling: A toolbox complementary to controlled radical polymerization. Progress in Polymer Science, 2012, 37, 1004-1030.	11.8	66
160	Quantifying Photoinitiation Efficiencies in a Multiphotoinitiated Freeâ€Radical Polymerization. Macromolecular Rapid Communications, 2012, 33, 47-53.	2.0	23
161	Living Polymerization via Anionic Initiation for the Synthesis of Wellâ€Defined PPV Materials. Macromolecular Rapid Communications, 2012, 33, 242-247.	2.0	14
162	Quantitative Comparison of the Mesitoyl vs the Benzoyl Fragment in Photoinitiation: A Question of Origin. Macromolecules, 2011, 44, 2542-2551.	2.2	26

#	Article	IF	CITATIONS
163	Nitrones in synthetic polymer chemistry. Polymer Chemistry, 2011, 2, 1008-1017.	1.9	54
164	A Detailed Investigation of the Free Radical Copolymerization Behavior of <i>n</i> -Butyl Acrylate Macromonomers. Macromolecules, 2011, 44, 6691-6700.	2.2	14
165	Nitrone-mediated radical coupling reactions: a new synthetic tool exemplified on dendrimer synthesis. Chemical Communications, 2011, 47, 5491-5493.	2.2	27
166	Photoinduced Conjugation of Aldehyde Functional Polymers with Olefins via $[2+2]$ -Cycloaddition. Macromolecules, 2011, 44, 7969-7976.	2.2	25
167	Discovery of an Anionic Polymerization Mechanism for High Molecular Weight PPV Derivatives via the Sulfinyl Precursor Route. Macromolecules, 2011, 44, 7610-7616.	2.2	23
168	Kinetic and mechanistic similarities between reversible addition fragmentation chain transfer intermediate and acrylate midchain radicals. Journal of Polymer Science Part A, 2011, 49, 1293-1297.	2.5	21
169	Embedding multiple siteâ€specific functionalities into polymer chains via nitroneâ€mediated radical coupling reactions. Journal of Polymer Science Part A, 2011, 49, 2118-2126.	2.5	32
170	RAFT kinetics revisited: Revival of the RAFT debate. Journal of Polymer Science Part A, 2011, 49, 4154-4163.	2.5	10
171	Formation of triblock copolymers via a tandem enhanced spin capturing—nitroxideâ€mediated polymerization reaction sequence. Journal of Polymer Science Part A, 2011, 49, 4841-4850.	2.5	23
172	Revealing Model Dependencies in "Assessing the RAFT Equilibrium Constant via Model Systems: An EPR Study― Macromolecular Rapid Communications, 2011, 32, 1891-1898.	2.0	20
173	"Clicking―Polymers or Just Efficient Linking: What Is the Difference?. Angewandte Chemie - International Edition, 2011, 50, 60-62.	7.2	583
174	Mark–Houwink Parameters for the Universal Calibration of Acrylate, Methacrylate and Vinyl Acetate Polymers Determined by Online Sizeâ€Exclusion Chromatography—Mass Spectrometry. Macromolecular Chemistry and Physics, 2010, 211, 520-528.	1.1	60
175	Control of methyl methacrylate radical polymerization via Enhanced Spin Capturing Polymerization (ESCP). Polymer, 2010, 51, 3821-3825.	1.8	20
176	Limitations of radical thiolâ€ene reactions for polymer–polymer conjugation. Journal of Polymer Science Part A, 2010, 48, 1699-1713.	2.5	235
177	Detailed investigation of the propagation rate of urethane acrylates. Polymer Chemistry, 2010, 1, 470-479.	1.9	22
178	Determination of the propagation rate coefficient of acrylonitrile. Polymer Chemistry, 2010, 1, 438-441.	1.9	22
179	Reducing the Degree of Branching in Polyacrylates via Midchain Radical Patching: A Quantitative Melt-State NMR Study. Macromolecules, 2010, 43, 5492-5495.	2.2	40
180	Spin capturing with nitrones: radical coupling reactions with concurrent introduction of mid-chain functionality. Chemical Communications, 2010, 46, 1959-1961.	2.2	41

#	Article	IF	CITATIONS
181	Spin Capturing with "Clickable―Nitrones: Generation of Miktoarmed Star Polymers. Macromolecules, 2010, 43, 3785-3793.	2.2	46
182	Determination of Propagation Rate Coefficients for Methyl and 2-Ethylhexyl Acrylate via High Frequency PLPâ°'SEC under Consideration of the Impact of Chain Branching. Macromolecules, 2010, 43, 10427-10434.	2.2	49
183	Synthesis of a Macromonomer Library from Highâ€Temperature Acrylate Polymerization. Macromolecular Rapid Communications, 2009, 30, 2028-2035.	2.0	45
184	Optimum Reaction Conditions for the Synthesis of Macromonomers Via the Highâ€Temperature Polymerization of Acrylates. Macromolecular Theory and Simulations, 2009, 18, 421-433.	0.6	38
185	The kinetics of enhanced spin capturing polymerization: Influence of the nitrone structure. Journal of Polymer Science Part A, 2009, 47, 1098-1107.	2.5	35
186	Studying the mechanism of thioketoneâ€mediated polymerization via electrospray ionization mass spectrometry. Journal of Polymer Science Part A, 2009, 47, 1864-1876.	2.5	25
187	Propagation rate coefficients of isobornyl acrylate, <i>tert</i> â€butyl acrylate and 1â€ethoxyethyl acrylate: A high frequency PLPâ€SEC study. Journal of Polymer Science Part A, 2009, 47, 6641-6654.	2.5	51
188	Free-radical propagation and termination kinetics of the butyl acrylate dimer studied by pulsed laser polymerization techniques. Polymer, 2009, 50, 3111-3118.	1.8	13
189	Continuous ATRP Synthesis of Blockâ€Like Copolymers via Column Reactors: Design and Validation of a Kinetic Model. Macromolecular Reaction Engineering, 2009, 3, 529-538.	0.9	21
190	Quantifying the Efficiency of Photoinitiation Processes in Methyl Methacrylate Free Radical Polymerization via Electrospray Ionization Mass Spectrometry. Macromolecules, 2009, 42, 1488-1493.	2.2	38
191	Formation Efficiency of ABA Blockcopolymers via Enhanced Spin Capturing Polymerization (ESCP): Locating the Alkoxyamine Function. Macromolecules, 2009, 42, 5027-5035.	2.2	35
192	Quantitative Product Spectrum Analysis of Poly(butyl acrylate) via Electrospray Ionization Mass Spectrometry. Macromolecules, 2009, 42, 62-69.	2.2	59
193	Selfâ€directed formation of uniform unsaturated macromolecules from acrylate monomers at high temperatures. Journal of Polymer Science Part A, 2008, 46, 3433-3437.	2.5	50
194	Enhanced spin capturing polymerization: An efficient and versatile protocol for controlling molecular weight distributions. Journal of Polymer Science Part A, 2008, 46, 7273-7279.	2.5	49
195	The role of midâ€chain radicals in acrylate free radical polymerization: Branching and scission. Journal of Polymer Science Part A, 2008, 46, 7585-7605.	2.5	201
196	Laser Induced Marking of Polymer Chains with Radical Spin Traps. Macromolecular Rapid Communications, 2008, 29, 503-510.	2.0	9
197	A Study into the Stability of 3,6-Dihydro-2 <i>H</i> -thiopyran Rings: Key Linkages in the RAFT Hetero-Dielsâ^'Alder <i>Click</i> Concept. Macromolecules, 2008, 41, 7904-7912.	2.2	53
198	Pushing the Limit: Pulsed Laser Polymerization of n-Butyl Acrylate at 500 Hz. Macromolecules, 2008, 41, 8971-8973.	2.2	85

#	Article	IF	Citations
199	PLP Labeling in ESR Spectroscopic Analysis of Secondary and Tertiary Acrylate Propagating Radicals. Macromolecules, 2008, 41, 288-291.	2.2	56
200	Controlling the Fate of Midchain Radicals in Acrylate Polymerization. Australian Journal of Chemistry, 2008, 61, 646.	0.5	7
201	Chain-Length-Dependent Termination in Acrylate Radical Polymerization Studied via Pulsed-Laser-Initiated RAFT Polymerization. Australian Journal of Chemistry, 2007, 60, 779.	0.5	28
202	Mapping Poly(butyl acrylate) Product Distributions by Mass Spectrometry in a Wide Temperature Range: A Suppression of Midchain Radical Side Reactions. Macromolecules, 2007, 40, 8906-8912.	2.2	74
203	Mapping Photolysis Product Radical Reactivities via Soft Ionization Mass Spectrometry in Acrylate, Methacrylate, and Itaconate Systems. Macromolecules, 2007, 40, 6820-6833.	2.2	60
204	Thioketone-Mediated Polymerization of Butyl Acrylate: Controlling Free-Radical Polymerization via a Dormant Radical Species. Macromolecular Rapid Communications, 2007, 28, 746-753.	2.0	36
205	Free-Radical Polymerization Kinetics of 2-Acrylamido-2-methylpropanesulfonic Acid in Aqueous Solution. Macromolecules, 2006, 39, 509-516.	2.2	47
206	Termination Kinetics oftert-Butyl Methacrylate and ofn-Butyl Methacrylate Free-Radical Bulk Homopolymerizations. Macromolecular Chemistry and Physics, 2006, 207, 1640-1650.	1.1	47
207	Determination of Addition and Fragmentation Rate Coefficients in RAFT Polymerization via Time-Resolved ESR Spectroscopy after Laser Pulse Initiation. Macromolecular Rapid Communications, 2006, 27, 182-187.	2.0	49
208	Mechanism of poly(methyl methacrylate) film formation by pulsed laser deposition. Journal of Applied Physics, 2006, 100, 014906.	1.1	11
209	Termination Kinetics of Dibutyl Itaconate Free-Radical Polymerization Studied via the SP-PLP-ESR Technique. Macromolecular Chemistry and Physics, 2005, 206, 333-341.	1.1	53
210	Laser Single Pulse Initiated RAFT Polymerization for Assessing Chain-Length Dependent Radical Termination Kinetics. Macromolecular Rapid Communications, 2005, 26, 796-802.	2.0	65
211	PLPâ^ESR Monitoring of Midchain Radicals in n-Butyl Acrylate Polymerization. Macromolecules, 2005, 38, 5098-5103.	2.2	147
212	Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films. Journal of Applied Physics, 2005, 97, 063501.	1.1	19
213	Chain Length Dependent Termination in Butyl Acrylate Free-Radical Polymerization Studied via Stationary and Pulsed Laser Initiated RAFT Polymerization. Macromolecules, 2005, 38, 9497-9508.	2.2	93
214	Free-Radical Termination Kinetics Studied Using a Novel SP-PLP-ESR Technique. Macromolecular Rapid Communications, 2004, 25, 1004-1009.	2.0	88
215	Title is missing!., 0,,.		9
216	Solventâ€Independent Molecular Weight Determination of Polymers Based on a Truly Universal Calibration. Angewandte Chemie, 0, , .	1.6	7