
Luigi Coppola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5662289/publications.pdf Version: 2024-02-01

LUICI CORDOLA

#	Article	IF	CITATIONS
1	Impact of the associated cation on chloride binding of Portland cement paste. Cement and Concrete Research, 2015, 68, 196-202.	4.6	170
2	Electrical Properties of Carbon Nanotubes Cement Composites for Monitoring Stress Conditions in Concrete Structures. Applied Mechanics and Materials, 0, 82, 118-123.	0.2	88
3	Electric arc furnace granulated slag for sustainable concrete. Construction and Building Materials, 2016, 123, 115-119.	3.2	78
4	Pathways towards sustainable concrete. Cement and Concrete Research, 2022, 154, 106718.	4.6	69
5	Binders alternative to Portland cement and waste management for sustainable construction—part 1. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 186-202.	0.7	57
6	The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes. Construction and Building Materials, 2020, 248, 118682.	3.2	56
7	Pre-packed alkali activated cement-free mortars for repair of existing masonry buildings and concrete structures. Construction and Building Materials, 2018, 173, 111-117.	3.2	48
8	Binders alternative to Portland cement and waste management for sustainable construction – Part 2. Journal of Applied Biomaterials and Functional Materials, 2018, 16, 207-221.	0.7	45
9	An Empathetic Added Sustainability Index (EASI) for cementitious based construction materials. Journal of Cleaner Production, 2019, 220, 475-482.	4.6	45
10	Electroosmotic transport in porous construction materials and dehumidification of masonry. Construction and Building Materials, 2009, 23, 254-263.	3.2	42
11	Use of tartaric acid for the production of sustainable Portland-free CSA-based mortars. Construction and Building Materials, 2018, 171, 243-249.	3.2	40
12	Plain and Ultrafine Fly Ashes Mortars for Environmentally Friendly Construction Materials. Sustainability, 2018, 10, 874.	1.6	38
13	The Durability of One-Part Alkali-Activated Slag-Based Mortars in Different Environments. Sustainability, 2020, 12, 3561.	1.6	37
14	Evaluation of the corrosion inhibition of salts of organic acids in alkaline solutions and chloride contaminated concrete. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 187-195.	0.8	34
15	Innovative carboxylic acid waterproofing admixture for self-sealing watertight concretes. Construction and Building Materials, 2018, 171, 817-824.	3.2	33
16	Lightweight cement-free alkali-activated slag plaster for the structural retrofit and energy upgrading of poor quality masonry walls. Cement and Concrete Composites, 2019, 104, 103341.	4.6	33
17	Concrete manufactured with crushed asphalt as partial replacement of natural aggregates. Materiales De Construccion, 2016, 66, 101.	0.2	33
18	Mechanical Characterization of Cement Composites Reinforced with Fiberglass, Carbon Nanotubes or Glass Reinforced Plastic (GRP) at High Strain Rates. Applied Mechanics and Materials, 0, 82, 190-195.	0.2	32

LUIGI COPPOLA

#	Article	IF	CITATIONS
19	Influence of acrylic latex and pre-treated hemp fibers on cement based mortar properties. Construction and Building Materials, 2021, 273, 121720.	3.2	32
20	CSA-based Portland-free binders to manufacture sustainable concretes for jointless slabs on ground. Construction and Building Materials, 2018, 187, 691-698.	3.2	31
21	Corrosion inhibitors in reinforced concrete structures Part 1: Preventative technique. Corrosion Engineering Science and Technology, 2004, 39, 219-228.	0.7	23
22	Cement-Based Renders Manufactured with Phase-Change Materials: Applications and Feasibility. Advances in Materials Science and Engineering, 2016, 2016, 1-6.	1.0	22
23	Performance and Compatibility of Phosphonate-Based Superplasticizers for Concrete. Buildings, 2017, 7, 62.	1.4	22
24	Self-Sensing Properties of Green Alkali-Activated Binders with Carbon-Based Nanoinclusions. Sustainability, 2020, 12, 9916.	1.6	22
25	Chloride Diffusion in Concrete Protected with a Silane-Based Corrosion Inhibitor. Materials, 2020, 13, 2001.	1.3	22
26	Tartaric acid effects on hydration development and physico-mechanical properties of blended calcium sulphoaluminate cements. Cement and Concrete Composites, 2021, 124, 104275.	4.6	22
27	The Improvement of Durability of Reinforced Concretes for Sustainable Structures: A Review on Different Approaches. Materials, 2022, 15, 2728.	1.3	15
28	The Rheological and Mechanical Performances of Concrete Manufactured with Blended Admixtures Based on Phosphonates. Key Engineering Materials, 0, 674, 159-164.	0.4	12
29	Water reducers for the high alumina cement-silica fume system. Materiaux Et Constructions, 1996, 29, 639-644.	0.3	10
30	The influence of heat and steam curing on the properties of one-part fly ash/slag alkali activated materials: Preliminary results. AIP Conference Proceedings, 2019, , .	0.3	10
31	Influence of Lithium Carbonate and Sodium Carbonate on Physical and Elastic Properties and on Carbonation Resistance of Calcium Sulphoaluminate-Based Mortars. Applied Sciences (Switzerland), 2020, 10, 176.	1.3	10
32	Hydrogen Permeation in X65 Steel under Cyclic Loading. Materials, 2020, 13, 2309.	1.3	9
33	Protection of Concrete Structures: Performance Analysis of Different Commercial Products and Systems. Materials, 2021, 14, 3719.	1.3	9
34	Inhibition Effect of Tartrate Ions on the Localized Corrosion of Steel in Pore Solution at Different Chloride Concentrations. Buildings, 2020, 10, 105.	1.4	7
35	Fiber reinforced mortars based on free Portland-CSA binders under high stress rate. EPJ Web of Conferences, 2018, 183, 04013.	0.1	4
36	Repair and conservation of reinforced concrete tent-church by Pino Pizzigoni at Longuelo – Bergamo (Italy). International Journal of Architectural Heritage, 2019, 13, 630-638.	1.7	2

LUIGI COPPOLA

#	Article	IF	CITATIONS
37	Special Issue "Corrosion in Concrete: Inhibitors and Coatings― Materials, 2021, 14, 6211.	1.3	1
38	Durability of Mortars Manufactured with Low-Carbon Binders Exposed to Calcium Chloride-Based De-Icing Salts. Key Engineering Materials, 0, 919, 151-160.	0.4	1
39	Material for the Engineered Barrier System under Development for the LLW Repository in Italy. Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	Ο