
Lynn Arthur Megeney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5662035/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /0	$\operatorname{Dverlock}_{4.3}^{10}$	D Tf 50 742 T 1,430742 T
2	MyoD is required for myogenic stem cell function in adult skeletal muscle Genes and Development, 1996, 10, 1173-1183.	2.7	620
3	Caspase 3 activity is required for skeletal muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11025-11030.	3.3	487
4	The postâ€natal heart contains a myocardial stem cell population. FEBS Letters, 2002, 530, 239-243.	1.3	400
5	Determination versus differentiation and the MyoD family of transcription factors. Biochemistry and Cell Biology, 1995, 73, 723-732.	0.9	221
6	Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4230-4235.	3.3	208
7	Neural stem cell differentiation is dependent upon endogenous caspaseâ€3 activity. FASEB Journal, 2005, 19, 1671-1673.	0.2	185
8	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	1.4	158
9	MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Current Biology, 1999, 9, 1203-1206.	1.8	144
10	Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13348-13353.	3.3	139
11	Strain-Dependent Myeloid Hyperplasia, Growth Deficiency, and Accelerated Cell Cycle in Mice Lacking the Rb-Related <i>p107</i> Gene. Molecular and Cellular Biology, 1998, 18, 7455-7465.	1.1	137
12	Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 220-225.	3.3	119
13	Expression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7791-7796.	3.3	118
14	Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death and Differentiation, 2017, 24, 1359-1368.	5.0	101
15	Parole terms for a killer. Cell Cycle, 2010, 9, 3012-3017.	1.3	97
16	The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skeletal Muscle, 2016, 6, 16.	1.9	88
17	bFGF and LIF signaling activates STAT3 in proliferating myoblasts. Genesis, 1996, 19, 139-145.	3.3	87
18	ls caspaseâ€dependent apoptosis only cell differentiation taken to the extreme?. FASEB Journal, 2007, 21, 8-17	0.2	86

LYNN ARTHUR MEGENEY

#	Article	IF	CITATIONS
19	A Non-Death Role of the Yeast Metacaspase: Yca1p Alters Cell Cycle Dynamics. PLoS ONE, 2008, 3, e2956.	1.1	83
20	Glucocorticoid treatment alleviates dystrophic myofiber pathology by activation of the calcineurin/NFâ€AT pathway. FASEB Journal, 2004, 18, 1937-1939.	0.2	77
21	Wnt11 Promotes Cardiomyocyte Development by Caspase-Mediated Suppression of Canonical Wnt Signals. Molecular and Cellular Biology, 2011, 31, 163-178.	1.1	77
22	Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1α, drives utrophin gene expression at the neuromuscular junction. American Journal of Physiology - Cell Physiology, 2005, 289, C908-C917.	2.1	75
23	Wnt/β-catenin controls follistatin signalling to regulate satellite cell myogenic potential. Skeletal Muscle, 2015, 5, 14.	1.9	75
24	Quantitative Proteomic Analysis of Dystrophic Dog Muscle. Journal of Proteome Research, 2011, 10, 2465-2478.	1.8	72
25	Activation of JNK1 contributes to dystrophic muscle pathogenesis. Current Biology, 2001, 11, 1278-1282.	1.8	71
26	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	4.5	71
27	Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5246-52.	3.3	68
28	CD34 Promotes Satellite Cell Motility and Entry into Proliferation to Facilitate Efficient Skeletal Muscle Regeneration. Stem Cells, 2011, 29, 2030-2041.	1.4	65
29	Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4079-87.	3.3	54
30	Regeneration and myogenic cell proliferation correlate with taurine levels in dystrophin- and MyoD-Deficient muscles. , 1998, 252, 311-324.		52
31	Epinephrine administration stimulates GLUT4 translocation but reduces glucose transport in muscle. Biochemical and Biophysical Research Communications, 1992, 187, 685-691.	1.0	50
32	A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skeletal Muscle, 2012, 2, 5.	1.9	43
33	Rehabilitation of a Contract Killer: Caspase-3 Directs Stem Cell Differentiation. Cell Stem Cell, 2008, 2, 515-516.	5.2	40
34	PTEN Contributes to Profound PI3K/Akt Signaling Pathway Deregulation in Dystrophin-Deficient Dog Muscle. American Journal of Pathology, 2009, 174, 1459-1470.	1.9	36
35	Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Research, 2017, 27, 1195-1215.	5.7	35
36	Identification of Candidate Regulators of Embryonic Stem Cell Differentiation by Comparative Phosphoprotein Affinity Profiling. Molecular and Cellular Proteomics, 2006, 5, 57-67.	2.5	33

Lynn Arthur Megeney

#	Article	IF	CITATIONS
37	Temporal activation of XRCC1-mediated DNA repair is essential for muscle differentiation. Cell Discovery, 2016, 2, 15041.	3.1	31
38	Cardiotrophin-1 Maintains the Undifferentiated State in Skeletal Myoblasts. Journal of Biological Chemistry, 2009, 284, 19679-19693.	1.6	29
39	Bin1 Src Homology 3 Domain Acts as a Scaffold for Myofiber Sarcomere Assembly. Journal of Biological Chemistry, 2009, 284, 27674-27686.	1.6	29
40	Cancer cells use self-inflicted DNA breaks to evade growth limits imposed by genotoxic stress. Science, 2022, 376, 476-483.	6.0	27
41	Phosphorylation-dependent structural alterations in the small hsp30 chaperone are associated with cellular recovery. Experimental Cell Research, 2003, 286, 175-185.	1.2	26
42	The non-death role of metacaspase proteases. Frontiers in Oncology, 2012, 2, 78.	1.3	24
43	Cell death proteins: An evolutionary role in cellular adaptation before the advent of apoptosis. BioEssays, 2013, 35, 974-983.	1.2	21
44	Reconstructing the Regulatory Kinase Pathways of Myogenesis from Phosphopeptide Data. Molecular and Cellular Proteomics, 2006, 5, 2244-2251.	2.5	20
45	The role of Yca1 in proteostasis. Yca1 regulates the composition of the insoluble proteome. Journal of Proteomics, 2013, 81, 24-30.	1.2	20
46	Caspase signaling, a conserved inductive cue for metazoan cell differentiation. Seminars in Cell and Developmental Biology, 2018, 82, 96-104.	2.3	20
47	Comparative analysis of phosphoprotein-enriched myocyte proteomes reveals widespread alterations during differentiation. FEBS Letters, 2004, 574, 138-144.	1.3	18
48	The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discovery, 2019, 5, 6.	3.1	18
49	<i>MLIP</i> causes recessive myopathy with rhabdomyolysis, myalgia and baseline elevated serum creatine kinase. Brain, 2021, 144, 2722-2731.	3.7	14
50	Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration. Microbial Cell, 2015, 2, 458-465.	1.4	14
51	A rapid and efficient method for the isolation of postnatal murine cardiac myocyte and fibroblast cells. Canadian Journal of Physiology and Pharmacology, 2018, 96, 535-539.	0.7	11
52	The yeast kinome displays scale free topology with functional hub clusters. BMC Bioinformatics, 2005, 6, 271.	1.2	10
53	Active Kinase Proteome Screening Reveals Novel Signal Complexity in Cardiomyopathy. Molecular and Cellular Proteomics, 2005, 4, 673-682.	2.5	10
54	Expression of murine muscle-enriched A-type lamin-interacting protein (MLIP) is regulated by tissue-specific alternative transcription start sites. Journal of Biological Chemistry, 2018, 293, 19761-19770.	1.6	9

#	Article	IF	CITATIONS
55	Caspase Cleavage of Gelsolin Is an Inductive Cue for Pathologic Cardiac Hypertrophy. Journal of the American Heart Association, 2018, 7, e010404.	1.6	7
56	Chromatin Reorganization during Myoblast Differentiation Involves the Caspase-Dependent Removal of SATB2. Cells, 2022, 11, 966.	1.8	7
57	Isolation of Phosphoproteins. Methods in Molecular Biology, 2008, 424, 365-372.	0.4	4
58	Reconstructing Regulatory Kinase Pathways from Phosphopeptide Data: A Bioinformatics Approach. Methods in Molecular Biology, 2009, 527, 311-319.	0.4	3
59	Getting to the Heart of the Matter: Exploring Opportunities for Gene Therapy Treatment of Dystrophic Cardiomyopathy. Current Gene Therapy, 2004, 4, 195-198.	0.9	0
60	Monitoring the Proteostasis Function of the Saccharomyces cerevisiae Metacaspase Yca1. Methods in Molecular Biology, 2014, 1133, 223-235.	0.4	0