
T A Nirmal Peiris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-Aqueous One-Pot SnO ₂ Nanoparticle Inks and Their Use in Printable Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 5535-5545.	6.7	7
2	Impact of Anion Impurities in Commercial PbI ₂ on Lead Halide Perovskite Films and Solar Cells. , 2021, 3, 351-355.		6
3	Microfluidic Processing of Ligandâ€Engineered NiO Nanoparticles for Lowâ€Temperature Holeâ€Transporting Layers in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100342.	5.8	11
4	Thermal Degradation Analysis of Sealed Perovskite Solar Cell with Porous Carbon Electrode at 100 °C for 7000 h. Energy Technology, 2019, 7, 245-252.	3.8	29
5	Preparation and characterization of mesoporous hydroxyapatite with non-cytotoxicity and heavy metal adsorption capacity. New Journal of Chemistry, 2018, 42, 10271-10278.	2.8	24
6	Microwave-Assisted Synthesis and Processing of Al-Doped, Ga-Doped, and Al, Ga Codoped ZnO for the Pursuit of Optimal Conductivity for Transparent Conducting Film Fabrication. ACS Sustainable Chemistry and Engineering, 2017, 5, 4820-4829.	6.7	45
7	Enhancement of the hole conducting effect of NiO by a N ₂ blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode. Nanoscale, 2017, 9, 5475-5482.	5.6	33
8	Effect of Electrochemically Deposited MgO Coating on Printable Perovskite Solar Cell Performance. Coatings, 2017, 7, 36.	2.6	11
9	Aerosol-assisted fabrication of tin-doped indium oxide ceramic thin films from nanoparticle suspensions. Journal of Materials Chemistry C, 2016, 4, 5739-5746.	5.5	8
10	100 °C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes. ChemSusChem, 2016, 9, 2604-2608.	6.8	103
11	Analysis of Sputtering Damage on <i>I</i> – <i>V</i> Curves for Perovskite Solar Cells and Simulation with Reversed Diode Model. Journal of Physical Chemistry C, 2016, 120, 28441-28447.	3.1	61
12	Electricâ€Field Aerosolâ€Assisted CVD: Synthesis, Characterization, and Properties of Tin Oxide Microballs Prepared from a Single Source Precursor. Chemical Vapor Deposition, 2015, 21, 360-368.	1.3	10
13	Aerosolâ€Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties. Chemical Vapor Deposition, 2015, 21, 41-45.	1.3	55
14	Insights into mechanical compression and the enhancement in performance by Mg(OH)2 coating in flexible dye sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 2912.	2.8	12
15	Electrochemical Determination of the Density of States of Nanostructured NiO Films. ACS Applied Materials & Interfaces, 2014, 6, 14988-14993.	8.0	14
16	Effect of ZnO seed layer thickness on hierarchical ZnO nanorod growth on flexible substrates for application in dye-sensitised solar cells. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	34
17	Development of molecular precursors for deposition of indium sulphide thin film electrodes for photoelectrochemical applications. Dalton Transactions, 2013, 42, 10919.	3.3	32
18	Enhanced Performance of Flexible Dye-Sensitized Solar Cells: Electrodeposition of Mg(OH) ₂ on a Nanocrystalline TiO ₂ Electrode. Journal of Physical Chemistry C, 2012, 116, 1211-1218.	3.1	41

#	Article	IF	CITATIONS
19	Preparation of Nanocrystalline TiO ₂ Electrodes for Flexible Dye-Sensitized Solar Cells: Influence of Mechanical Compression. Journal of Physical Chemistry C, 2012, 116, 19053-19061.	3.1	38
20	Enhancement of Photoelectrochemical Performance of AACVDâ€produced TiO ₂ Electrodes by Microwave Irradiation while Preserving the Nanostructure. Chemical Vapor Deposition, 2012, 18, 107-111.	1.3	28