## Hao He

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661615/publications.pdf Version: 2024-02-01



HAO HE

| #  | Article                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Aura OMI observations of regional SO <sub>2</sub> and<br>NO <sub>2</sub> pollution changes from 2005 to 2015. Atmospheric<br>Chemistry and Physics, 2016, 16, 4605-4629.                                                                                                                                           | 1.9 | 521       |
| 2  | India Is Overtaking China as the World's Largest Emitter of Anthropogenic Sulfur Dioxide. Scientific Reports, 2017, 7, 14304.                                                                                                                                                                                      | 1.6 | 230       |
| 3  | Vertical profiles of NO⁢sub>2⁢/sub>,<br>SO <sub>2</sub> , HONO, HCHO, CHOCHO and aerosols derived from<br>MAX-DOAS measurements at a rural site in the central western North China Plain and their relation<br>to emission sources and effects of regional transport. Atmospheric Chemistry and Physics, 2019, 19, | 1.9 | 66        |
| 4  | SQ <sub>2</sub> over central China: Measurements, numerical simulations and the tropospheric sulfur budget. Journal of Geophysical Research, 2012, 117, .                                                                                                                                                          | 3.3 | 55        |
| 5  | Trends in emissions and concentrations of air pollutants in the lower troposphere in the<br>Baltimore/Washington airshed from 1997 to 2011. Atmospheric Chemistry and Physics, 2013, 13,<br>7859-7874.                                                                                                             | 1.9 | 55        |
| 6  | High ozone concentrations on hot days: The role of electric power demand and NO <sub>x</sub><br>emissions. Geophysical Research Letters, 2013, 40, 5291-5294.                                                                                                                                                      | 1.5 | 46        |
| 7  | Methane Emissions From the Baltimoreâ€Washington Area Based on Airborne Observations: Comparison<br>to Emissions Inventories. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8869-8882.                                                                                                                | 1.2 | 43        |
| 8  | Response of SO <sub>2</sub> and particulate air pollution to local and regional emission controls: A case study in Maryland. Earth's Future, 2016, 4, 94-109.                                                                                                                                                      | 2.4 | 38        |
| 9  | Evaluation of GEOS-5 sulfur dioxide simulations during the Frostburg, MD 2010 field campaign.<br>Atmospheric Chemistry and Physics, 2014, 14, 1929-1941.                                                                                                                                                           | 1.9 | 37        |
| 10 | Topâ€Đown Estimates of NO <sub><i>x</i></sub> and CO Emissions From Washington, D.C.â€Baltimore<br>During the WINTER Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7705-7724.                                                                                                               | 1.2 | 35        |
| 11 | Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ.<br>Atmospheric Chemistry and Physics, 2020, 20, 14617-14647.                                                                                                                                                          | 1.9 | 34        |
| 12 | An elevated reservoir of air pollutants over the Mid-Atlantic States during the 2011 DISCOVER-AQ campaign: Airborne measurements and numerical simulations. Atmospheric Environment, 2014, 85, 18-30.                                                                                                              | 1.9 | 33        |
| 13 | Using Shortâ€Term CO/CO <sub>2</sub> Ratios to Assess Air Mass Differences Over the Korean Peninsula<br>During KORUSâ€AQ. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10951-10972.                                                                                                                  | 1.2 | 31        |
| 14 | Evaluating commercial marine emissions and their role in air quality policy using observations and the CMAQ model. Atmospheric Environment, 2018, 173, 96-107.                                                                                                                                                     | 1.9 | 30        |
| 15 | Vertical distributions of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 8995-9010.                                                                                                                              | 1.9 | 28        |
| 16 | Evaluation of the use of a commercially available cavity ringdown absorption spectrometer for<br>measuring NO2 in flight, and observations over the Mid-Atlantic States, during DISCOVER-AQ. Journal<br>of Atmospheric Chemistry, 2015, 72, 503-521.                                                               | 1.4 | 27        |
| 17 | Effects of emissions change, climate change and long-range transport on regional modeling of future<br>U.S. particulate matter pollution and speciation. Atmospheric Environment, 2018, 179, 166-176.                                                                                                              | 1.9 | 26        |
| 18 | Methane Emissions from the Marcellus Shale in Southwestern Pennsylvania and Northern West<br>Virginia Based on Airborne Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124,<br>1862-1878.                                                                                                     | 1.2 | 26        |

Hao He

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The long-term trend and production sensitivity change in the US ozone pollution from observations and model simulations. Atmospheric Chemistry and Physics, 2020, 20, 3191-3208.                                                   | 1.9 | 24        |
| 20 | Measurement report: Aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China. Atmospheric Chemistry and Physics, 2020, 20, 14523-14545.                                          | 1.9 | 23        |
| 21 | Future U.S. ozone projections dependence on regional emissions, climate change, long-range transport and differences in modeling design. Atmospheric Environment, 2016, 128, 124-133.                                              | 1.9 | 20        |
| 22 | Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions. Atmospheric Measurement Techniques, 2020, 13, 1337-1356.                                           | 1.2 | 16        |
| 23 | Using near-road observations of CO, NOy, and CO2 to investigate emissions from vehicles: Evidence for an impact of ambient temperature and specific humidity. Atmospheric Environment, 2020, 232, 117558.                          | 1.9 | 16        |
| 24 | Impact of Fire Emissions on U.S. Air Quality from 1997 to 2016–A Modeling Study in the Satellite Era.<br>Remote Sensing, 2020, 12, 913.                                                                                            | 1.8 | 12        |
| 25 | Carbon Monoxide Emissions from the Washington, DC, and Baltimore Metropolitan Area: Recent Trend and COVID-19 Anomaly. Environmental Science & amp; Technology, 2022, 56, 2172-2180.                                               | 4.6 | 7         |
| 26 | Expected ozone benefits of reducing nitrogen oxide (NO <sub>x</sub> ) emissions from coal-fired electricity generating units in the eastern United States. Journal of the Air and Waste Management Association, 2017, 67, 279-291. | 0.9 | 5         |
| 27 | Measured and modelled ozone photochemical production in the Baltimore-Washington airshed.<br>Atmospheric Environment: X, 2019, 2, 100017.                                                                                          | 0.8 | 5         |
| 28 | Chemical climatology of atmospheric pollutants in the eastern United States: Seasonal/diurnal cycles<br>and contrast under clear/cloudy conditions for remote sensing. Atmospheric Environment, 2019, 206,<br>85-107.              | 1.9 | 5         |
| 29 | Airborne Observations of CFCs Over Hebei Province, China in Spring 2016. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035152.                                                                                 | 1.2 | 5         |
| 30 | Combined effects of air pollution and extreme heat events among ESKD patients within the Northeastern United States. Science of the Total Environment, 2022, 812, 152481.                                                          | 3.9 | 4         |