Andrzej Lenart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661569/publications.pdf Version: 2024-02-01

ANDRZEI LENART

#	Article	IF	CITATIONS
1	Development and characterization of composite edible films based on sodium alginate and pectin. Journal of Food Engineering, 2013, 115, 459-465.	2.7	304
2	Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 2017, 98, 348-356.	3.6	246
3	How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films. Polymers, 2018, 10, 412.	2.0	203
4	What's new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science and Technology, 2017, 67, 150-159.	7.8	185
5	Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innovative Food Science and Emerging Technologies, 2010, 11, 503-510.	2.7	134
6	Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. International Dairy Journal, 2010, 20, 53-60.	1.5	122
7	Freeze-Drying - Application in Food Processing and Biotechnology - a Review. Polish Journal of Food and Nutrition Sciences, 2011, 61, 165-171.	0.6	121
8	Osmo-Convective Drying of Fruits and Vegetables: Technology and Application. Drying Technology, 1996, 14, 391-413.	1.7	117
9	Mass exchange during osmotic pretreatment of vegetables. Journal of Food Engineering, 2001, 49, 137-140.	2.7	111
10	On the use of edible coatings to monitor osmotic dehydration kinetics for minimal solids uptake. Journal of Food Engineering, 2006, 72, 85-91.	2.7	73
11	The effect of blanching and freezing on osmotic dehydration of pumpkin. Journal of Food Engineering, 2008, 86, 30-38.	2.7	71
12	Osmotic dehydration in production of sustainable and healthy food. Trends in Food Science and Technology, 2016, 50, 186-192.	7.8	71
13	Effect of modified starch or maltodextrin incorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soy protein isolate-based edible films. Innovative Food Science and Emerging Technologies, 2012, 16, 148-154.	2.7	69
14	Characterisation of composite edible films based on wheat starch and wheyâ€protein isolate. International Journal of Food Science and Technology, 2015, 50, 372-380.	1.3	66
15	Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch–whey protein blend edible films. Journal of the Science of Food and Agriculture, 2017, 97, 858-867.	1.7	64
16	Influence of osmotic dehydration on microwave-convective drying of frozen strawberries. Journal of Food Engineering, 2004, 65, 519-525.	2.7	61
17	Effect of oil lamination between plasticized starch layers on film properties. Food Chemistry, 2016, 195, 56-63.	4.2	61
18	Rehydration and sorption properties of osmotically pretreated freeze-dried strawberries. Journal of Food Engineering, 2010, 97, 267-274.	2.7	60

ANDRZEJ LENART

#	Article	IF	CITATIONS
19	Sustainable Development in the Agri-Food Sector in Terms of the Carbon Footprint: A Review. Sustainability, 2020, 12, 6463.	1.6	45
20	Surface modification of dairy powders: Effects of fluid-bed agglomeration and coating. International Dairy Journal, 2013, 33, 55-61.	1.5	35
21	Liquid and vapour water transfer through whey protein/lipid emulsion films. Journal of the Science of Food and Agriculture, 2010, 90, 1673-1680.	1.7	34
22	Sorption and wetting properties of pectin edible films. Czech Journal of Food Sciences, 2012, 30, 446-455.	0.6	34
23	Effect of pre-treatment conditions on content and activity of water and colour of freeze-dried pumpkin. LWT - Food Science and Technology, 2014, 59, 1075-1081.	2.5	33
24	Acid hydrolysis of kappa arrageenan as a way of gaining new substances for freezing process modification and protection from excessive recrystallisation of ice. International Journal of Food Science and Technology, 2015, 50, 1799-1806.	1.3	33
25	Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. European Food Research and Technology, 2019, 245, 2101-2112.	1.6	32
26	Optical, mechanical, and moisture sorption properties of whey protein edible films. Journal of Food Process Engineering, 2019, 42, e13245.	1.5	31
27	KINETICS OF OSMOTIC DEHYDRATION OF APPLES WITH PECTIN COATINGS. Drying Technology, 1999, 17, 1359-1373.	1.7	30
28	DRYING CHARACTERISTICS OF OSMOTICALLY DEHYDRATED FRUITS COATED WITH SEMIPERMEABLE EDIBLE FILMS. Drying Technology, 2001, 19, 849-877.	1.7	30
29	Water vapour adsorption properties of agglomerated baby food powders. Journal of Food Engineering, 2012, 109, 135-141.	2.7	30
30	The influence of ingredients distribution on properties of agglomerated cocoa products. Journal of Food Engineering, 2005, 68, 155-161.	2.7	28
31	The impact of high pressure and drying processing on internal structure and quality of fruit. European Food Research and Technology, 2018, 244, 1329-1340.	1.6	28
32	The effect of adding berry fruit juice concentrates and by-product extract to sugar solution on osmotic dehydration and sensory properties of apples. Journal of Food Science and Technology, 2019, 56, 1927-1938.	1.4	28
33	Eating Habits and Sustainable Food Production in the Development of Innovative "Healthy―Snacks. Sustainability, 2019, 11, 2800.	1.6	27
34	Effect of fat replacement on flow and thermal properties of dairy powders. LWT - Food Science and Technology, 2016, 68, 653-658.	2.5	26
35	Dried strawberries as a high nutritional value fruit snack. Food Science and Biotechnology, 2018, 27, 799-807.	1.2	26
36	Production of innovative freeze-dried vegetable snack with hydrocolloids in terms of technological process and carbon footprint calculation. Food Hydrocolloids, 2020, 108, 105993.	5.6	25

Andrzej Lenart

#	Article	lF	CITATIONS
37	Artificial neural network modelling of changes in physical and chemical properties of cocoa powder mixtures during agglomeration. LWT - Food Science and Technology, 2015, 64, 140-148.	2.5	24
38	Osmotic dehydration of Honeoye strawberries in solutions enriched with natural bioactive molecules. LWT - Food Science and Technology, 2017, 85, 500-505.	2.5	24
39	Dynamic behaviour of starch-based coatings on fruit surfaces. Postharvest Biology and Technology, 2019, 147, 166-173.	2.9	23
40	Effect of the aerated structure on selected properties of freeze-dried hydrocolloid gels. International Agrophysics, 2016, 30, 9-17.	0.7	21
41	Effect of Hens Age and Storage Time on Functional and Physiochemical Properties of Eggs. Journal of Applied Poultry Research, 2019, 28, 290-300.	0.6	21
42	Effect of Agglomeration on Flowability of Baby Food Powders. Journal of Food Science, 2010, 75, E276-84.	1.5	19
43	Effect of composition on physical properties of food powders. International Agrophysics, 2016, 30, 237-243.	0.7	19
44	The effect of composition and aeration on selected physical and sensory properties of freeze-dried hydrocolloids, 2017, 67, 94-103.	5.6	18
45	Influence of Chemical Composition and Structure on Sorption Properties of Freeze-Dried Pumpkin. Drying Technology, 2013, 31, 655-665.	1.7	17
46	Effect of dietary canthaxanthin and iodine on the production performance and egg quality of laying hens. Poultry Science, 2018, 97, 4008-4019.	1.5	16
47	Structural Impact of Osmotically Pretreated Freeze-Dried Strawberries On Their Mechanical Properties. International Journal of Food Properties, 2010, 13, 1134-1149.	1.3	15
48	Influence of water activity on the compressibility and mechanical properties of cocoa products. LWT - Food Science and Technology, 2015, 60, 1054-1060.	2.5	14
49	Effect of Quantity of Low-Methoxyl Pectin on Physical Properties of Freeze-Dried Strawberry Jellies. Polish Journal of Food and Nutrition Sciences, 2015, 65, 233-241.	0.6	13
50	Structure influence on mechanical and acoustic properties of freezeâ€dried gels obtained with the use of hydrocolloids. Journal of Texture Studies, 2017, 48, 131-142.	1.1	13
51	Development of apple chips technology. Heat and Mass Transfer, 2018, 54, 3573-3586.	1.2	13
52	Physical and Sensory Properties of Japanese Quince Chips Obtained by Osmotic Dehydration in Fruit Juice Concentrates and Hybrid Drying. Molecules, 2020, 25, 5504.	1.7	13
53	Sorption Properties of Vacuum-Dried Strawberries. Drying Technology, 2012, 30, 850-858.	1.7	12
54	Selected physical properties of convection dried apples after HHP treatment. LWT - Food Science and Technology, 2015, 63, 828-836.	2.5	11

Andrzej Lenart

#	Article	IF	CITATIONS
55	The Use of a Hybrid Drying Method with Pre-Osmotic Treatment in Strawberry Bio-Snack Technology. International Journal of Food Engineering, 2020, 16, .	0.7	11
56	Osmotic dehydration of Braeburn variety apples in the production of sustainable food products. International Agrophysics, 2018, 32, 141-146.	0.7	10
57	The influence of the structure on the sorption properties and phase transition temperatures of freeze-dried gels. Journal of Food Engineering, 2019, 252, 18-27.	2.7	10
58	The Use of Antioxidant Potential of Chokeberry Juice in Creating Pro-Healthy Dried Apples by Hybrid (Convection-Microwave-Vacuum) Method. Molecules, 2020, 25, 5680.	1.7	10
59	Correlations between Vitelline Membrane Strength and Selected Physical Parameters of Poultry Eggs. Annals of Animal Science, 2016, 16, 897-907.	0.6	10
60	Relevance of Interactions between Starch-based Coatings and Plum Fruit Surfaces: A Physical-Chemical Analysis. International Journal of Molecular Sciences, 2019, 20, 2220.	1.8	8
61	The influence of chokeberry juice and inulin as osmotic-enriching agents in pre-treatment on polyphenols content and sensory quality of dried strawberries. Agricultural and Food Science, 2019, 28, .	0.3	8
62	THE INFLUENCE OF CONSTANT AND VARIABLE CONDITIONS ON THE DRYING KINETICS OF APPLES. Drying Technology, 1998, 16, 761-778.	1.7	7
63	Rehydration properties of hybrid method dried fruit enriched by natural components. International Agrophysics, 2018, 32, 175-182.	0.7	7
64	Effect of Osmotic Pretreatment Combined with Vacuum Impregnation or High Pressure on the Water Diffusion Coefficients of Convection Drying: Case Study on Apples. Foods, 2021, 10, 2605.	1.9	7
65	Influence of Pear Variety and Drying Methods on the Quality of Dried Fruit. Molecules, 2020, 25, 5146.	1.7	6
66	Sorption properties of a modified powdered cocoa beverage. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2011, 32, .	0.7	5
67	Influence of sucrose substitutes and agglomeration on volatile compounds in powdered cocoa beverages. Journal of Food Science and Technology, 2020, 57, 350-363.	1.4	5
68	Corrigendum to "Rehydration and sorption properties of osmotically pretreated freeze-dried strawberries― Journal of Food Engineering, 2012, 113, 361.	2.7	4
69	Sorption properties and phase transitions temperature of freeze-dried strawberry model based on hydrocolloids with a tailored structure. Drying Technology, 2018, 36, 1209-1223.	1.7	4
70	Impact of Biodegradable Materials on the Quality of Plums. Coatings, 2022, 12, 226.	1.2	4
71	Effect of composition changes and aeration time on the structure and rehydration of innovative freeze-dried gels. International Agrophysics, 2018, 32, 429-435.	0.7	3
72	EFFECT OF PROTEIN CONCENTRATION ON KINETICS OF WATER VAPOUR ADSORPTION BY COATINGS PREPARED ON THE BASIS OF WHEY PROTEIN ISOLATE. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2011, , .	0.1	3

#	Article	IF	CITATIONS
73	STARCH COATINGS USED IN FOOD PACKAGING INDUSTRY. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2013, , .	0.1	2
74	Traditional Polish Curd Cheeses. , 2016, , 3-12.		1
75	WATER ACTIVITY OF POWDERED COCOA BEVERAGE WITH A MODIFIED COMPOSITION OF RAW MATERIALS. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2011, , .	0.1	0
76	EFFECT OF BLANCHING AND METHOD OF FREEZING ON SELECTED PROPERTIES OF FREEZE-DRIED PUMPKIN. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2013, , .	0.1	0