
Monica Dettin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospun Chitosan Functionalized with C12, C14 or C16 Tails for Blood-Contacting Medical Devices. Gels, 2022, 8, 113.	2.1	1
2	Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition. Materials, 2022, 15, 4647.	1.3	9
3	Bio-Functionalized Chitosan for Bone Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 5916.	1.8	34
4	SERS Investigation on Oligopeptides Used as Biomimetic Coatings for Medical Devices. Biomolecules, 2021, 11, 959.	1.8	5
5	Biofunctionalization of bioactive ceramic scaffolds to increase the cell response for bone regeneration. Biomedical Materials (Bristol), 2021, 16, 055007.	1.7	9
6	Covalent functionalization of decellularized tissues accelerates endothelialization. Bioactive Materials, 2021, 6, 3851-3864.	8.6	10
7	From nanoaggregates to mesoscale ribbons: the multistep self-organization of amphiphilic peptides. Nanoscale Advances, 2021, 3, 3605-3614.	2.2	3
8	Breast Cancer Cell Cultures on Electrospun Poly(ε-Caprolactone) as a Potential Tool for Preclinical Studies on Anticancer Treatments. Bioengineering, 2021, 8, 1.	1.6	22
9	Bioactivated Oxidized Polyvinyl Alcohol towards Next-Generation Nerve Conduits Development. Polymers, 2021, 13, 3372.	2.0	7
10	Thymosinâ€Î²4, and Human Vitronectin peptides Grafted to Collagen Tune Adhesion or VEGF Gene Expression in Human Cell Lines**. ChemistrySelect, 2021, 6, 10160-10164.	0.7	0
11	Chitosan Covalently Functionalized with Peptides Mapped on Vitronectin and BMP-2 for Bone Tissue Engineering. Nanomaterials, 2021, 11, 2784.	1.9	6
12	Influence of Extracellular Environment on Electroporation Efficiency. IFMBE Proceedings, 2021, , 673-681.	0.2	0
13	An atmospheric pressure plasma jet to tune the bioactive peptide coupling to polycaprolactone electrospun layers. Applied Surface Science, 2020, 507, 144713.	3.1	19
14	EAK Hydrogels Cross-Linked by Disulfide Bonds: Cys Number and Position Are Matched to Performances. ACS Biomaterials Science and Engineering, 2020, 6, 1154-1164.	2.6	7
15	Expression and function of the stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) in the swine ovarian follicle. Domestic Animal Endocrinology, 2020, 71, 106404.	0.8	8
16	Breast cancer cells grown on hyaluronic acid-based scaffolds as 3D in vitro model for electroporation. Bioelectrochemistry, 2020, 136, 107626.	2.4	13
17	Hydroxyapatite Surfaces Functionalized with a Self-Assembling Peptide: XPS, RAIRS and NEXAFS Study. Nanomaterials, 2020, 10, 1151.	1.9	9
18	The Efficiency of Gene Electrotransfer in Breast-Cancer Cell Lines Cultured on a Novel Collagen-Free 3D Scaffold, Cancers, 2020, 12, 1043,	1.7	16

Monica Dettin

#	Article	IF	CITATIONS
19	3D Synthetic Peptide-based Architectures for the Engineering of the Enteric Nervous System. Scientific Reports, 2019, 9, 5583.	1.6	25
20	Biofunctionalization of TiO ₂ Surfaces with Self-Assembling Layers of Oligopeptides Covalently Grafted to Chitosan. ACS Biomaterials Science and Engineering, 2019, 5, 2190-2199.	2.6	15
21	Cysteine-Modified Self-Assembling Peptides on Gold: The Role of the Head and Tail. Langmuir, 2019, 35, 16593-16604.	1.6	2
22	A Novel 3D Scaffold for Cell Growth to Asses Electroporation Efficacy. Cells, 2019, 8, 1470.	1.8	7
23	Cell-seeded 3D scaffolds as in vitro models for electroporation. Bioelectrochemistry, 2019, 125, 15-24.	2.4	15
24	Self-Assembling Behavior of Cysteine-Modified Oligopeptides: An XPS and NEXAFS Study. Journal of Physical Chemistry C, 2018, 122, 6236-6239.	1.5	17
25	Biofunctionalization of TiO2 surfaces with self-assembling oligopeptides in different pH and Ionic Strength conditions: Charge effects and molecular organization. Materials Science and Engineering C, 2018, 90, 651-656.	3.8	13
26	Surface-driven first-step events of nanoscale self-assembly for molecular peptide fibers: An experimental and theoretical study. Colloids and Surfaces B: Biointerfaces, 2018, 168, 148-155.	2.5	5
27	Surface enhanced Raman scattering and quantumâ€mechanical calculations on selfâ€assembling oligopeptides. Journal of Raman Spectroscopy, 2018, 49, 982-996.	1.2	8
28	Viscoelastic Oxidized Alginates with Reversible Imine Type Crosslinks: Self-Healing, Injectable, and Bioprintable Hydrogels. Gels, 2018, 4, 85.	2.1	68
29	Enhancement of peri-implant bone osteogenic activity induced by a peptidomimetic functionalization of titanium. Annals of Anatomy, 2018, 218, 165-174.	1.0	6
30	Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques. Nanomaterials, 2018, 8, 148.	1.9	10
31	Discrimination between ulcerative colitis and Crohn's disease using phage display identified peptides and virus-mimicking synthetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2027-2036.	1.7	3
32	Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides. Bioactive Materials, 2017, 2, 121-130.	8.6	25
33	A synthetic BMP-2 mimicking peptide induces glioblastoma stem cell differentiation. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2282-2292.	1.1	17
34	Natural Scaffolds for Regenerative Medicine: Direct Determination of Detergents Entrapped in Decellularized Heart Valves. BioMed Research International, 2017, 2017, 1-9.	0.9	12
35	Insertion of a Flexible Spacer Increases the Yield of Site-Specific Bioconjugation through N-Terminal Transamination. Letters in Organic Chemistry, 2017, 14, .	0.2	2
36	Design of Decorated Self-Assembling Peptide Hydrogels as Architecture for Mesenchymal Stem Cells. Materials, 2016, 9, 727.	1.3	32

MONICA DETTIN

#	Article	IF	CITATIONS
37	Self-assembling peptide hydrogels immobilized on silicon surfaces. Materials Science and Engineering C, 2016, 69, 200-207.	3.8	4
38	Osteogenic properties of a short BMP-2 chimera peptide. Journal of Peptide Science, 2015, 21, 700-709.	0.8	15
39	Facile and selective covalent grafting of an RGD-peptide to electrospun scaffolds improves HUVEC adhesion. Journal of Peptide Science, 2015, 21, 786-795.	0.8	14
40	Electrospun Scaffolds for Osteoblast Cells: Peptide-Induced Concentration-Dependent Improvements of Polycaprolactone. PLoS ONE, 2015, 10, e0137505.	1.1	32
41	A peptide nucleic acid label-free biosensor for Mycobacterium tuberculosis DNA detection via azimuthally controlled grating-coupled SPR. Analytical Methods, 2015, 7, 4173-4180.	1.3	18
42	Biocompatibility Issues of Next Generation Decellularized Bioprosthetic Devices. Conference Papers in Science, 2014, 2014, 1-6.	0.3	4
43	Driving hâ€osteoblast adhesion and proliferation on titania: peptide hydrogels decorated with growth factors and adhesive conjugates. Journal of Peptide Science, 2014, 20, 585-594.	0.8	19
44	Spectroscopic investigation on the structural modifications induced by radical stress on oligopeptides for tissue engineering. Journal of Raman Spectroscopy, 2013, 44, 1446-1450.	1.2	4
45	Mechanisms underlying the attachment and spreading of human osteoblasts: From transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta Biomaterialia, 2013, 9, 6105-6115.	4.1	41
46	Cardiomyocytes <i>In Vitro</i> Adhesion Is Actively Influenced by Biomimetic Synthetic Peptides for Cardiac Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 725-736.	1.6	14
47	Self-assembling peptide-enriched electrospun polycaprolactone scaffolds promote the h-osteoblast adhesion and modulate differentiation-associated gene expression. Bone, 2012, 51, 851-859.	1.4	35
48	Synthesis and Chromatography-Free Purification of PNA-PEO Conjugates for the Functionalisation of Gold Sensors. Molecules, 2012, 17, 11026-11045.	1.7	10
49	Chemoselective Surface Immobilization of Proteins through a Cleavable Peptide. Bioconjugate Chemistry, 2011, 22, 1753-1757.	1.8	14
50	ln vitro and in vivo pro-angiogenic effects of thymosin-β4-derived peptides. Cellular Immunology, 2011, 271, 299-307.	1.4	8
51	Interactions between oligopeptides and oxidised titanium surfaces detected by vibrational spectroscopy. Journal of Raman Spectroscopy, 2011, 42, 276-285.	1.2	11
52	Biomimetic peptideâ€enriched electrospun polymers: A photoelectron and infrared spectroscopy study. Journal of Applied Polymer Science, 2011, 122, 3574-3582.	1.3	7
53	Electrospun scaffolds of self-assembling peptides with poly(ethylene oxide) for bone tissue engineering. Acta Biomaterialia, 2011, 7, 2526-2532.	4.1	49
54	Plasmonic Platforms for Biodetection Devices. , 2011, , .		2

MONICA DETTIN

#	Article	IF	CITATIONS
55	An XPS study on the covalent immobilization of adhesion peptides on a glass surface. Solid State Sciences, 2010, 12, 1861-1865.	1.5	27
56	Self-assembling behaviour of self-complementary oligopeptides on biocompatible substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 169, 36-42.	1.7	13
57	Effects on <i>in vitro</i> and <i>in vivo</i> angiogenesis induced by small peptides carrying adhesion sequences. Journal of Peptide Science, 2010, 16, 349-357.	0.8	26
58	Adhesion Peptide Immobilization on Electrospun Polymers: a Photoelectron Spectroscopy Study. , 2010, , .		0
59	Covalent surface modification of titanium oxide with different adhesive peptides: Surface characterization and osteoblastâ€like cell adhesion. Journal of Biomedical Materials Research - Part A, 2009, 90A, 35-45.	2.1	46
60	Assessment of novel chemical strategies for covalent attachment of adhesive peptides to rough titanium surfaces: XPS analysis and biological evaluation. Journal of Biomedical Materials Research - Part A, 2009, 91A, 463-479.	2.1	33
61	Selfâ€assembling properties of ionicâ€complementary peptides. Journal of Peptide Science, 2009, 15, 210-219.	0.8	21
62	Human Vitronectin–Derived Peptide Covalently Grafted onto Titanium Surface Improves Osteogenic Activity: A Pilot <i>In Vivo</i> Study on Rabbits. Tissue Engineering - Part A, 2009, 15, 2917-2926.	1.6	33
63	In vitro biological activity of bovine milk ribonuclease-4. Molecular Medicine Reports, 2009, 3, 127-32.	1.1	11
64	Bioactive surfaces using peptide grafting in tissue engineering. , 2009, , 479-507.		1
65	A NEXAFS and XPS study of the adsorption of selfâ€assembling peptides on TiO ₂ : the influence of the side chains. Surface and Interface Analysis, 2008, 40, 210-214.	0.8	18
66	Vibrational study of autoâ€assembling oligopeptides for biomedical applications. Journal of Raman Spectroscopy, 2008, 39, 250-259.	1.2	21
67	Selfâ€assembling peptides: Sequence, secondary structure in solution and film formation. Biopolymers, 2008, 89, 906-915.	1.2	20
68	Self-assembling peptides: A combined XPS and NEXAFS investigation on the structure of two dipeptides Ala–Glu, Ala–Lys. Materials Science and Engineering C, 2008, 28, 309-315.	3.8	30
69	Study of the structure and the molecular mobility of a new biological matrix (collagen/peptides). , 2008, , .		0
70	Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides. Bone, 2007, 40, 693-699.	1.4	92
71	Improvement of Anselme's adhesion model for evaluating human osteoblast response to peptide-grafted titanium surfaces. Bone, 2007, 41, 704-712.	1.4	15
72	Heparin enhances the furin cleavage of HIVâ€∃ gp160 peptides. FEBS Letters, 2007, 581, 5807-5813.	1.3	29

Monica Dettin

#	Article	IF	CITATIONS
73	Novel immobilizations of an adhesion peptide on the TiO2 surface: An XPS investigation. Materials Science and Engineering C, 2007, 27, 1201-1206.	3.8	37
74	Peptides adsorption on TiO2 and Au: Molecular organization investigated by NEXAFS, XPS and IR. Surface Science, 2007, 601, 3843-3849.	0.8	37
75	Thin films of a self-assembling peptide on TiO2 and Au studied by NEXAFS, XPS and IR spectroscopies. Materials Science and Engineering C, 2006, 26, 929-934.	3.8	48
76	Evaluation of human osteoblast-like cell adhesion strength on Ti substrates functionalized by bioactive peptide grafting. Journal of Biomechanics, 2006, 39, S575.	0.9	0
77	The Proprotein Convertase SKI-1/S1P. Journal of Biological Chemistry, 2006, 281, 23471-23481.	1.6	57
78	Evaluation of Silicon Dioxide–Based Coating Enriched with Bioactive Peptides Mapped on Human Vitronectin and Fibronectin: In Vitro and In Vivo Assays. Tissue Engineering, 2006, 12, 3509-3523.	4.9	15
79	Conformational analysis of heparin binding peptides. Biomaterials, 2005, 26, 3207-3214.	5.7	13
80	Effect of synthetic peptides on osteoblast adhesion. Biomaterials, 2005, 26, 4507-4515.	5.7	70
81	Structural Investigation of the HIV-1 Envelope Glycoprotein gp160 Cleavage Site 3: Role of Site-Specific Mutations. ChemBioChem, 2004, 5, 1653-1661.	1.3	5
82	Contact profilometry and correspondence analysis to correlate surface properties and cell adhesion in vitro of uncoated and coated Ti and Ti6Al4V disks. Biomaterials, 2004, 25, 2437-2445.	5.7	31
83	Anti-HIV Activity and Conformational Studies of Peptides Derived from the C-Terminal Sequence of SDF-1. Journal of Medicinal Chemistry, 2004, 47, 3058-3064.	2.9	16
84	Synthetic Peptides for AIDS Research. Current Protein and Peptide Science, 2004, 5, 225-234.	0.7	2
85	Structural Investigation of the HIV-1 Envelope Glycoprotein gp160 Cleavage Site, 2: Relevance of an N-Terminal Helix. ChemBioChem, 2003, 4, 727-733.	1.3	4
86	Synthetic Peptides Derived from the Angiostatin K4 Domain Inhibit Endothelial Cell Migration. ChemBioChem, 2003, 4, 1238-1242.	1.3	4
87	Is the V3 Loop Involved in HIV Binding to CD4?â€. Biochemistry, 2003, 42, 9007-9012.	1.2	11
88	CCR5 N-terminus peptides enhance X4 HIV-1 infection by CXCR4 up-regulation. Biochemical and Biophysical Research Communications, 2003, 307, 640-646.	1.0	2
89	Structural Investigation of the HIV-1 Envelope Glycoprotein gp160 Cleavage Site. Chemistry - A European Journal, 2002, 8, 1467-1473.	1.7	10
90	Novel osteoblast-adhesive peptides for dental/orthopedic biomaterials. Journal of Biomedical Materials Research Part B, 2002, 60, 466-471.	3.0	74

MONICA DETTIN

#	Article	IF	CITATIONS
91	Synthetic Peptides for Study of Human Immunodeficiency Virus Infection. Applied Biochemistry and Biotechnology, 2002, 102-103, 041-048.	1.4	2
92	A type-II?-turn, proline-containing, cyclic pentapeptide as a building block for the construction of models of the cleavage site of pro-oxytocin. Journal of Peptide Science, 2001, 7, 358-373.	0.8	8
93	Definition of the α2 region of HLA-DR molecules involved in CD4 binding. Human Immunology, 1999, 60, 273-281.	1.2	12
94	Biological and conformational studies on analogues of a synthetic peptide enhancing HIV-1 infection. , 1998, 4, 436-448.		6
95	Design, synthesis and CD4 binding studies of a fluorescent analogue of a peptide that enhances HIVâ€1 infectivity. Chemical Biology and Drug Design, 1998, 51, 110-115.	1.2	3
96	Investigations Using Photo Affinity Labeled Analogues Confirm the Binding between sCD4 and the PND of HIV-1, MN. Biochemical and Biophysical Research Communications, 1997, 241, 584-588.	1.0	2
97	A novel algorithm for the coupling control in solidâ€phase peptide synthesis. Chemical Biology and Drug Design, 1997, 50, 231-237.	1.2	1
98	Minimal Sequence Requirements for Synthetic Peptides Derived from the V3 Loop of the Human Immunodeficiency Virus Type 1 (HIV-1) to Enhance HIV-1 Binding to Cells and Infection. Virology, 1995, 206, 807-816.	1.1	15
99	Structural Investigation and Kinetic Characterization of Potential Cleavage Sites of HIV Gp160 by Human Furin and Pc1. Biochemical and Biophysical Research Communications, 1995, 213, 356-361.	1.0	20
100	Structural Studies on Synthetic Peptides from the Principal Neutralizing Domain of HIV-1 gp120 That Bind to CD4 and Enhance HIV-1 Infection. Biochemical and Biophysical Research Communications, 1993, 191, 364-370.	1.0	8
101	Evidence for the presence of a secondary structure at the dibasic processing site of prohormone: the pro-ocytocin model. EMBO Journal, 1992, 11, 2399-405.	3.5	13
102	Binding to CD4 of synthetic peptides patterned on the principal neutralizing domain of the HIV-1 envelope protein. Virology, 1991, 185, 820-828.	1.1	35
103	Synthetic peptides from the principal neutralizing domain of human immunodeficiency virus type 1 (HIV-1) enhance HIV-1 infection through a CD4-dependent mechanism. Virology, 1991, 184, 187-196.	1.1	45
104	Anti-HIV-1 Activity of CD4 Synthetic Oligopeptides Representative of the Putative gp120 Binding Site. Antiviral Chemistry and Chemotherapy, 1991, 2, 157-161.	0.3	2