
Andrea Giuliani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661283/publications.pdf Version: 2024-02-01

ANDREA CILILIANI

#	Article	IF	CITATIONS
1	Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth and Planetary Science Letters, 2013, 365, 86-96.	1.8	137
2	Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth-Science Reviews, 2014, 139, 145-167.	4.0	126
3	Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos, 2016, 240-243, 189-201.	0.6	111
4	A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nature Communications, 2019, 10, 3511.	5.8	108
5	Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos, 2018, 312-313, 322-342.	0.6	91
6	Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology, 2012, 40, 967-970.	2.0	88
7	Petrogenesis of Mantle Polymict Breccias: Insights into Mantle Processes Coeval with Kimberlite Magmatism. Journal of Petrology, 2014, 55, 831-858.	1.1	86
8	Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: A review. Chemical Geology, 2014, 374-375, 61-83.	1.4	81
9	Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?. Nature Communications, 2015, 6, 6837.	5.8	78
10	The final stages of kimberlite petrogenesis: Petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chemical Geology, 2017, 455, 342-356.	1.4	78
11	Oxide, sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite. Chemical Geology, 2013, 353, 4-18.	1.4	77
12	What is a Kimberlite? Petrology and Mineralogy of Hypabyssal Kimberlites. Elements, 2019, 15, 381-386.	0.5	72
13	Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Science Advances, 2020, 6, eaaz0424.	4.7	72
14	Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir. Nature, 2019, 573, 578-581.	13.7	64
15	A new approach to reconstructing the composition and evolution of kimberlite melts: A case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos, 2018, 304-307, 1-15.	0.6	58
16	In-situ assimilation of mantle minerals by kimberlitic magmas — Direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos, 2016, 256-257, 182-196.	0.6	57
17	Kimberlites: From Deep Earth to Diamond Mines. Elements, 2019, 15, 377-380.	0.5	55
18	New geochemical constraints on the origins of MARID and PIC rocks: Implications for mantle metasomatism and mantle-derived potassic magmatism. Lithos, 2018, 318-319, 478-493.	0.6	50

ANDREA GIULIANI

#	Article	IF	CITATIONS
19	Trace element analysis of high-Mg olivine by LA-ICP-MS – Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites. Chemical Geology, 2019, 524, 136-157.	1.4	44
20	Sulfur isotope composition of metasomatised mantle xenoliths from the Bultfontein kimberlite (Kimberley, South Africa): Contribution from subducted sediments and the effect of sulfide alteration on S isotope systematics. Earth and Planetary Science Letters, 2016, 445, 114-124.	1.8	43
21	Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chemical Geology, 2017, 455, 331-341.	1.4	43
22	Origin of complex zoning in olivine from diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa). Mineralogy and Petrology, 2018, 112, 539-554.	0.4	43
23	Composition and emplacement of the Benfontein kimberlite sill complex (Kimberley, South Africa): Textural, petrographic and melt inclusion constraints. Lithos, 2019, 324-325, 297-314.	0.6	43
24	Progressive metasomatism of the mantle by kimberlite melts: Sr–Nd–Hf–Pb isotope compositions of MARID and PIC minerals. Earth and Planetary Science Letters, 2019, 509, 15-26.	1.8	43
25	Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust. Nature Communications, 2020, 11, 4342.	5.8	43
26	Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts. Chemical Geology, 2014, 383, 76-85.	1.4	42
27	LIMA U–Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa. Earth and Planetary Science Letters, 2014, 401, 132-147.	1.8	41
28	Petrogenesis of a Hybrid Cluster of Evolved Kimberlites and Ultramafic Lamprophyres in the Kuusamo Area, Finland. Journal of Petrology, 2019, 60, 2025-2050.	1.1	37
29	Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths. Mineralogy and Petrology, 2018, 112, 71-84.	0.4	34
30	Remnants of early Earth differentiation in the deepest mantle-derived lavas. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
31	Tracking continental-scale modification of the Earth's mantle using zircon megacrysts. Geochemical Perspectives Letters, 0, , 1-6.	1.0	32
32	Mantle oddities: A sulphate fluid preserved in a MARID xenolith from the Bultfontein kimberlite (Kimberley, South Africa). Earth and Planetary Science Letters, 2013, 376, 74-86.	1.8	31
33	Crystallisation sequence and magma evolution of the De Beers dyke (Kimberley, South Africa). Mineralogy and Petrology, 2018, 112, 503-518.	0.4	29
34	The role of lithospheric heterogeneity on the composition of kimberlite magmas from a single field: The case of Kaavi-Kuopio, Finland. Lithos, 2020, 354-355, 105333.	0.6	29
35	Subduction-related petrogenesis of Late Archean calc-alkaline lamprophyres in the Yilgarn Craton (Western Australia). Precambrian Research, 2020, 338, 105550.	1.2	29
36	Kimberlite Metasomatism of the Lithosphere and the Evolution of Olivine in Carbonate-rich Melts — Evidence from the Kimberley Kimberlites (South Africa). Journal of Petrology, 2020, 61, .	1.1	28

ANDREA GIULIANI

#	Article	IF	CITATIONS
37	Nickel-rich metasomatism of the lithospheric mantle by pre-kimberlitic alkali-S–Cl-rich C–O–H fluids. Contributions To Mineralogy and Petrology, 2013, 165, 155-171.	1.2	26
38	lsotopic analyses of clinopyroxenes demonstrate the effects of kimberlite melt metasomatism upon the lithospheric mantle. Lithos, 2020, 370-371, 105595.	0.6	23
39	Evidence for subduction-related signatures in the southern African lithosphere from the N-O isotopic composition of metasomatic mantle minerals. Geochimica Et Cosmochimica Acta, 2019, 266, 237-257.	1.6	22
40	Contrasting types of micaceous kimberlite-lamproite magmatism from the Man Craton (West Africa): New insights from petrography and mineral chemistry. Lithos, 2020, 362-363, 105483.	0.6	22
41	Tungsten-182 evidence for an ancient kimberlite source. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
42	Bushveld superplume drove Proterozoic magmatism and metallogenesis in Australia. Scientific Reports, 2020, 10, 19729.	1.6	18
43	Southwestern Africa on the burner: Pleistocene carbonatite volcanism linked to deep mantle upwelling in Angola. Geology, 2017, 45, 971-974.	2.0	17
44	Characterisation of primary and secondary carbonates in hypabyssal kimberlites: an integrated compositional and Sr-isotopic approach. Mineralogy and Petrology, 2018, 112, 555-567.	0.4	17
45	Mantle-like oxygen isotopes in kimberlites determined by in situ SIMS analyses of zoned olivine. Geochimica Et Cosmochimica Acta, 2019, 266, 274-291.	1.6	17
46	Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories in coherent kimberlites caused by differing emplacement mechanisms. Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	17
47	The spatial and temporal evolution of primitive melt compositions within the Lac de Gras kimberlite field, Canada: Source evolution vs lithospheric mantle assimilation. Lithos, 2021, 392-393, 106142.	0.6	17
48	Chlorine in mantle-derived carbonatite melts revealed by halite in the StHonoré intrusion (Québec,) Tj ETQ	190.0.0 rgl	BT /Overlock 1
49	The Geochemical Complexity of Kimberlite Rocks and their Olivine Populations: a Comment on Cordier <i>et al.</i> (<i>Journal of Petrology</i> , 56, 1775–1796, 2015). Journal of Petrology, 2016, 57, 921-926.	1.1	16
50	Djerfisherite in kimberlites and their xenoliths: implications for kimberlite melt evolution. Contributions To Mineralogy and Petrology, 2019, 174, 1.	1.2	16
51	A comparison of geochronological methods commonly applied to kimberlites and related rocks: Three case studies from Finland. Chemical Geology, 2020, 558, 119899.	1.4	16
52	Perturbation of the deep-Earth carbon cycle in response to the Cambrian Explosion. Science Advances, 2022, 8, eabj1325.	4.7	14
53	Platinum-group element and Au geochemistry of Late Archean to Proterozoic calc-alkaline and alkaline magmas in the Yilgarn Craton, Western Australia. Lithos, 2020, 374-375, 105716.	0.6	13
54	Petrogenesis of Proterozoic alkaline ultramafic rocks in the Yilgarn Craton, Western Australia. Gondwana Research, 2021, 93, 197-217.	3.0	13

ANDREA GIULIANI

#	Article	lF	CITATIONS
55	Titanates of the lindsleyite–mathiasite (LIMA) group reveal isotope disequilibrium associated with metasomatism in the mantle beneath Kimberley (South Africa). Earth and Planetary Science Letters, 2018, 482, 253-264.	1.8	11
56	New constraints on the source, composition, and post-emplacement modification of kimberlites from in situ C–O–Sr-isotope analyses of carbonates from the Benfontein sills (South Africa). Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	11
57	Controls on the explosive emplacement of diamondiferous kimberlites: New insights from hypabyssal and pyroclastic units in the Diavik mine, Canada. Lithos, 2020, 360-361, 105410.	0.6	11
58	Light oxygen isotopes in mantle-derived magmas reflect assimilation of sub-continental lithospheric mantle material. Nature Communications, 2021, 12, 6295.	5.8	11
59	Siderophile and chalcophile elements in spinels, sulphides and native Ni in strongly metasomatised xenoliths from the Bultfontein kimberlite (South Africa). Lithos, 2021, 380-381, 105880.	0.6	10
60	Geochemical and O–C–Sr–Nd Isotopic Constraints on the Petrogenetic Link between Aillikites and Carbonatites in the Tarim Large Igneous Province. Journal of Petrology, 2021, 62, .	1.1	10
61	Compositional Variations in Primitive Kimberlite Melts and Entrained Mantle Cargo from a Global Survey of Trace Element Compositions in Kimberlite Olivine. Journal of Petrology, 2022, 63, .	1.1	10
62	Petrogenesis of coeval lamproites and kimberlites from the Wajrakarur field, Southern India: New insights from olivine compositions. Lithos, 2021, 406-407, 106524.	0.6	8
63	Isotopic Disequilibrium in Migmatitic Hornfels of the Gennargentu Igneous Complex (Sardinia, Italy) Records the Formation of Low 87Sr/86Sr Melts from a Mica-Rich Source. Journal of Petrology, 2018, 59, 1309-1328.	1.1	7
64	Thallium isotopic composition of phlogopite in kimberlite-hosted MARID and PIC mantle xenoliths. Chemical Geology, 2020, 531, 119347.	1.4	7
65	Cratons, kimberlites and diamonds: selected papers of the 11th International Kimberlite Conference. Mineralogy and Petrology, 2018, 112, 1-3.	0.4	6
66	Reddish Metagranites from the Gennargentu Igneous Complex (Sardinia, Italy): Insight into Metasomatism Induced by Magma Mingling. Journal of Petrology, 2013, 54, 839-859.	1.1	5
67	Sulfur Isotope Constraints on the Petrogenesis of the Kimberley Kimberlites. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009845.	1.0	4
68	Geodynamic and Isotopic Constraints on the Genesis of Kimberlites, Lamproites and Related Magmas From the Finnish Segment of the Karelian Craton. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	4
69	Controls on the Emplacement Style of Coherent Kimberlites in the Lac de Gras Field, Canada. Journal of Petrology, 2022, 63, .	1.1	3
70	Editorial: The role of intraplate magmas and their inclusions in Earth's mantle evolution. Chemical Geology, 2017, 455, 1-5.	1.4	1
71	Remnants of early Earth differentiation in the deepest mantle-derived lavas. , 2021, , .		1
72	New insights into the mantle source of a large igneous province from highly siderophile element and Sr-Nd-Os isotope compositions of carbonate-rich ultramafic lamprophyres. Geochimica Et Cosmochimica Acta, 2022, 326, 77-96.	1.6	1

#	Article	IF	CITATIONS
73	The Petrology and Sulphur Isotopic Composition of Sulphide and Sulphate in the Kimberley Kimberlites. , 2020, , .		0
74	Decoupling of Kimberlite Source and Primitive Melt Compositions. , 2020, , .		0
75	Kimberlite Magmatism in Finland: Distinct Sources and Links to the Breakup of Rodinia. , 2020, , .		0
76	Sampling the C of the Deep Earth: <i>In situ</i> C-O-Sr Isotopes of Kimberlitic Carbonates Worldwide. , 2020, , .		0