Gerhard Zotz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661251/publications.pdf Version: 2024-02-01

<u> Cedhadd 7017</u>

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
2	Carbon Flux and Growth in Mature Deciduous Forest Trees Exposed to Elevated CO2. Science, 2005, 309, 1360-1362.	6.0	477
3	The systematic distribution of vascular epiphytes - a critical update. Botanical Journal of the Linnean Society, 2013, 171, 453-481.	0.8	321
4	Effects of Natural Intensities of Visible and Ultraviolet Radiation on Epidermal Ultraviolet Screening and Photosynthesis in Grape Leaves. Plant Physiology, 2001, 127, 863-875.	2.3	310
5	The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany, 2001, 52, 2067-2078.	2.4	300
6	Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology, 2005, 25, 641-650.	1.4	269
7	Heteroblasty—A Review. Botanical Review, The, 2011, 77, 109-151.	1.7	178
8	Plants on Plants $\hat{a} \in \hat{~}$ The Biology of Vascular Epiphytes. Fascinating Life Sciences, 2016, , .	0.5	173
9	Epiphytic Plants in a Changing World-Global: Change Effects on Vascular and Non-Vascular Epiphytes. Progress in Botany Fortschritte Der Botanik, 2009, , 147-170.	0.1	136
10	The epiphyte vegetation of the palm <i>Socratea exorrhiza</i> - correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology, 2003, 19, 81-90.	0.5	133
11	Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia, 2013, 171, 733-741.	0.9	129
12	Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AoB PLANTS, 2015, 7, .	1.2	129
13	Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes. Journal of Experimental Botany, 2001, 52, 2051-2056.	2.4	128
14	Which abiotic factors limit vegetative growth in a vascular epiphyte?. Functional Ecology, 2003, 17, 598-604.	1.7	114
15	Growth and phenology of mature temperate forest trees in elevated CO2. Global Change Biology, 2006, 12, 848-861.	4.2	114
16	How Much Water is in the Tank? Model Calculations for Two Epiphytic Bromeliads. Annals of Botany, 1999, 83, 183-192.	1.4	104
17	Food Body Production in Macaranga Triloba (Euphorbiaceae): A Plant Investment in Anti-Herbivore Defence via Symbiotic Ant Partners. Journal of Ecology, 1997, 85, 847.	1.9	99
18	Neither Host-specific nor Random: Vascular Epiphytes on Three Tree Species in a Panamanian Lowland Forest. Annals of Botany, 2006, 97, 1103-1114.	1.4	93

#	Article	IF	CITATIONS
19	â€~Hemiepiphyte': a confusing term and its history. Annals of Botany, 2013, 111, 1015-1020.	1.4	92
20	Water relations and carbon gain are closely related to cushion size in the moss Grimmia pulvinata. New Phytologist, 2000, 148, 59-67.	3.5	86
21	The vascular epiphytes of a lowland forest in Panama—species composition and spatial structure. Plant Ecology, 2008, 195, 131-141.	0.7	86
22	The occurrence of crassulacean acid metabolism among vascular epiphytes from Central Panama. New Phytologist, 1997, 137, 223-229.	3.5	85
23	Diversity and structure of the arthropod fauna within three canopy epiphyte species in central Panama. Journal of Tropical Ecology, 2002, 18, 161-176.	0.5	85
24	Secondary foundation species enhance biodiversity. Nature Ecology and Evolution, 2018, 2, 634-639.	3.4	85
25	Vascular epiphytes in the temperate zones–a review. Plant Ecology, 2005, 176, 173-183.	0.7	83
26	EpiList 1.0: a global checklist of vascular epiphytes. Ecology, 2021, 102, e03326.	1.5	82
27	A hierarchical framework for investigating epiphyte assemblages: networks, metaâ€communities, and scale. Ecology, 2010, 91, 377-385.	1.5	79
28	Demography of the epiphytic orchid, Dimerandra emarginata. Journal of Tropical Ecology, 1998, 14, 725-741.	0.5	76
29	Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra―and interspecific trait variability, and taxonomic signals. Functional Ecology, 2016, 30, 188-198.	1.7	76
30	Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. International Journal of Biometeorology, 2002, 46, 53-59.	1.3	74
31	Johansson revisited: the spatial structure of epiphyte assemblages. Journal of Vegetation Science, 2007, 18, 123-130.	1.1	73
32	Inherently slow growth in two Caribbean epiphytic species: A demographic approach. Journal of Vegetation Science, 2002, 13, 527-534.	1.1	72
33	Annual carbon balance and nitrogenâ€use efficiency in tropical C 3 and CAM epiphytes. New Phytologist, 1994, 126, 481-492.	3.5	68
34	Water stress in the epiphytic orchid, Dimerandra emarginata (G. Meyer) Hoehne. Oecologia, 1996, 107, 151-159.	0.9	66
35	Ecophysiological consequences of differences in plant size:in situcarbon gain and water relations of the epiphytic bromeliad,Vriesea sanguinolenta. Plant, Cell and Environment, 2001, 24, 101-111.	2.8	64
36	Advances in Dendrobium molecular research: Applications in genetic variation, identification and breeding. Molecular Phylogenetics and Evolution, 2016, 95, 196-216.	1.2	63

#	Article	IF	CITATIONS
37	Water relations of two co-occurring epiphytic bromeliads. Journal of Plant Physiology, 1998, 152, 545-554.	1.6	62
38	Highly efficient uptake of phosphorus in epiphytic bromeliads. Annals of Botany, 2009, 103, 477-484.	1.4	62
39	How prevalent is crassulacean acid metabolism among vascular epiphytes?. Oecologia, 2004, 138, 184-192.	0.9	61
40	Are vascular epiphytes nitrogen or phosphorus limited? A study of plant 15N fractionation and foliar N : P stoichiometry with the tank bromeliad Vriesea sanguinolenta. New Phytologist, 2011, 192, 462-470.	3.5	61
41	Light and dark CO2 fixation in Clusia uvitana and the effects of plant water status and CO2 availability. Oecologia, 1992, 91, 47-51.	0.9	60
42	Short-Term Regulation of Crassulacean Acid Metabolism Activity in a Tropical Hemiepiphyte, Clusia uvitana. Plant Physiology, 1993, 102, 835-841.	2.3	60
43	Long-term population dynamics of the epiphytic bromeliad, Werauhia sanguinolenta. Ecography, 2005, 28, 806-814.	2.1	59
44	The epiphyte vegetation of Annona glabra on Barro Colorado Island, Panama. Journal of Biogeography, 1999, 26, 761-776.	1.4	58
45	Population decline in the epiphytic orchid Aspasia principissa. Biological Conservation, 2006, 129, 82-90.	1.9	58
46	In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Functional Ecology, 2006, 20, 763-769.	1.7	58
47	A oneâ€year study on carbon, water and nutrient relationships in a tropical C 3 â€CAM hemiâ€epiphyte, Clusia uvitana Pittier. New Phytologist, 1994, 127, 45-60.	3.5	57
48	High rates of photosynthesis in the tropical pioneer tree, Ficus insipida Willd Flora: Morphology, Distribution, Functional Ecology of Plants, 1995, 190, 265-272.	0.6	57
49	Field Measurements of Water Relations and CO ₂ Exchange of the Tropical, Cyanobacterial Basidiolichen <i>Dictyonema glabratum</i> in a Panamanian Rainforest*. Botanica Acta, 1994, 107, 279-290.	1.6	56
50	Water Relations and CO ₂ Exchange of Tropical Bryophytes in a Lower Montane Rain Forest in Panama. Botanica Acta, 1997, 110, 9-17.	1.6	53
51	Short-term photosynthesis measurements predict leaf carbon balance in tropical rain-forest canopy plants. Planta, 1993, 191, 409.	1.6	51
52	Altitudinal changes in temperature responses of net photosynthesis and dark respiration in tropical bryophytes. Annals of Botany, 2013, 111, 455-465.	1.4	47
53	Host tree phenology affects vascular epiphytes at the physiological, demographic and community level. AoB PLANTS, 2015, 7, .	1.2	47
54	Substrate use of three epiphytic bromeliads. Ecography, 1997, 20, 264-270.	2.1	46

Gerhard Zotz

#	Article	IF	CITATIONS
55	Pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad <i>Tillandsia flexuosa</i> . Functional Ecology, 2009, 23, 472-479.	1.7	45
56	Island disharmony revisited using orchids as a model group. New Phytologist, 2019, 223, 597-606.	3.5	44
57	Lichen carbon gain under tropical conditions: water relations and CO2 exchange of Lobariaceae species of a lower montane rainforest in Panama. Lichenologist, 2004, 36, 329-342.	0.5	43
58	Vascular epiphytes contribute disproportionately to global centres of plant diversity. Global Ecology and Biogeography, 2022, 31, 62-74.	2.7	43
59	â€~And then there were three': highly efficient uptake of potassium by foliar trichomes of epiphytic bromeliads. Annals of Botany, 2010, 106, 421-427.	1.4	42
60	Lichen carbon gain under tropical conditions : water relations and CO2 exchange of three Leptogium species of a lower montane rainforest in Panama. Flora: Morphology, Distribution, Functional Ecology of Plants, 2000, 195, 172-190.	0.6	41
61	What are Backshoots Good For? Seasonal Changes in Mineral, Carbohydrate and Water Content of Different Organs of the Epiphytic Orchid, Dimerandra emarginata. Annals of Botany, 1999, 84, 791-798.	1.4	40
62	The role of the regeneration niche for the vertical stratification of vascular epiphytes. Journal of Tropical Ecology, 2013, 29, 277-290.	0.5	40
63	Photosynthesis of a tropical canopy tree, Ceiba pentandra, in a lowland forest in Panama. Tree Physiology, 1994, 14, 1291-1301.	1.4	39
64	Hydraulic architecture, water relations and vulnerability to cavitation of Clusia uvitana Pittier: a C 3 AM tropical hemiepiphyte. New Phytologist, 1994, 127, 287-295.	3.5	39
65	Hydraulic architecture and water use of selected species from a lower montane forest in Panama. Trees - Structure and Function, 1998, 12, 302.	0.9	39
66	The resorption of phosphorus is greater than that of nitrogen in senescing leaves of vascular epiphytes from lowland Panama. Journal of Tropical Ecology, 2004, 20, 693-696.	0.5	39
67	A metapopulation approach to the analysis of longâ€ŧerm changes in the epiphyte vegetation on the host tree Annona glabra. Journal of Vegetation Science, 2007, 18, 613-624.	1.1	39
68	Epiphytic orchids in tropical dry forests of Yucatan, Mexico – Species occurrence, abundance and correlations with host tree characteristics and environmental conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 100-109.	0.6	39
69	Cuticles of Vascular Epiphytes: Efficient Barriers for Water Loss after Stomatal Closure?. Annals of Botany, 2000, 86, 765-769.	1.4	38
70	Growth of epiphytic bromeliads in a changing world: The effects of CO2, water and nutrient supply. Acta Oecologica, 2010, 36, 659-665.	0.5	38
71	Competitor or facilitator? The ambiguous role of alpine grassland for the early establishment of tree seedlings at treeline. Oikos, 2017, 126, 1625-1636.	1.2	38
72	Photosynthesis and carbon gain of the lichen, Leptogium azureum, in a lowland tropical forest. Flora: Morphology, Distribution, Functional Ecology of Plants, 1994, 189, 179-186.	0.6	37

#	Article	IF	CITATIONS
73	Diel Patterns of CO2 Exchange in Rainforest Canopy Plants. , 1996, , 89-113.		37
74	Photosynthesis in vascular epiphytes: A survey of 27 species of diverse taxonomic origin. Flora: Morphology, Distribution, Functional Ecology of Plants, 2001, 196, 132-141.	0.6	37
75	Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions. AoB PLANTS, 2016, 8, .	1.2	37
76	Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogen. Plant Biology, 2010, 12, 108-113.	1.8	36
77	No Down-Regulation of Leaf Photosynthesis in Mature Forest Trees after Three Years of Exposure to Elevated CO2. Plant Biology, 2005, 7, 369-374.	1.8	35
78	In situ studies of water relations and CO 2 exchange of the tropical macrolichen, Sticta tomentosa. New Phytologist, 1998, 139, 525-535.	3.5	34
79	Changes in Carbohydrate and Nutrient Contents Throughout a Reproductive Cycle Indicate that Phosphorus is a Limiting Nutrient in the Epiphytic Bromeliad, Werauhia sanguinolenta. Annals of Botany, 2006, 97, 745-754.	1.4	34
80	Phytic acid in green leaves. Plant Biology, 2014, 16, 697-701.	1.8	34
81	Branchfall as a Demographic Filter for Epiphyte Communities: Lessons from Forest Floor-Based Sampling. PLoS ONE, 2015, 10, e0128019.	1.1	34
82	Uptake of ant-derived nitrogen in the myrmecophytic orchid Caularthron bilamellatum. Annals of Botany, 2012, 110, 757-766.	1.4	33
83	The velamen of epiphytic orchids: Variation in structure and correlations with nutrient absorption. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 230, 66-74.	0.6	33
84	Herbivory in the epiphyte, Vriesea sanguinolenta Cogn. & Marchal (Bromeliaceae). Journal of Tropical Ecology, 2000, 16, 829-839.	0.5	32
85	A conceptual framework for the analysis of vascular epiphyte assemblages. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 510-521.	1.1	32
86	Photosynthetic Capacity Increases with Plant Size. Botanica Acta, 1997, 110, 306-308.	1.6	31
87	Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora: Morphology, Distribution, Functional Ecology of Plants, 2003, 198, 71-77.	0.6	31
88	The velamen radicum is common among terrestrial monocotyledons. Annals of Botany, 2017, 120, 625-632.	1.4	30
89	Plant size: an ignored parameter in epiphyte ecophysiology?. Plant Ecology, 2001, 153, 65-72.	0.7	29
90	Longâ€ŧerm changes of the vascular epiphyte assemblage on the palm Socratea exorrhiza in a lowland forest in Panama. Journal of Vegetation Science, 2006, 17, 307-314.	1.1	29

#	Article	IF	CITATIONS
91	Vascular Epiphytes on Isolated Pasture Trees Along a Rainfall Gradient in the Lowlands of Panama. Biotropica, 2011, 43, 165-172.	0.8	29
92	Substrate preferences of epiphytic bromeliads: an experimental approach. Acta Oecologica, 2002, 23, 99-102.	0.5	28
93	Anatomy and photosynthetic parameters of roots and leaves of two shade-adapted orchids, Dichaea cogniauxiana Shltr. and Epidendrum secundum Jacq Flora: Morphology, Distribution, Functional Ecology of Plants, 2009, 204, 604-611.	0.6	28
94	Hemiepiphytes revisited. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 51, 125620.	1.1	28
95	A Simulation Study on the Importance of Size-related Changes in Leaf Morphology and Physiology for Carbon Gain in an Epiphytic Bromeliad. Annals of Botany, 2002, 90, 437-443.	1.4	27
96	Hydraulic architecture and water relations of a flood-tolerant tropical tree, Annona glabra. Tree Physiology, 1997, 17, 359-365.	1.4	26
97	Nutrient allocation of Macaranga triloba ant plants to growth, photosynthesis and indirect defence. Functional Ecology, 2002, 16, 475-483.	1.7	26
98	Physiological and anatomical changes during the early ontogeny of the heteroblastic bromeliad, Vriesea sanguinolenta, do not concur with the morphological change from atmospheric to tank form. Plant, Cell and Environment, 2004, 27, 1341-1350.	2.8	26
99	Trait patterns of epiphytes compared to other plant lifeâ€forms along a tropical elevation gradient. Functional Ecology, 2018, 32, 2073-2084.	1.7	26
100	A moss "canopy―– Small-scale differences in microclimate and physiological traits in Tortula ruralis. Flora: Morphology, Distribution, Functional Ecology of Plants, 2007, 202, 661-666.	0.6	25
101	â€~Are 3°C too much?': thermal niche breadth in Bromeliaceae and global warming. Journal of Ecology, 2017, 105, 507-516.	1.9	25
102	Bromeliaceae subfamilies show divergent trends of genome size evolution. Scientific Reports, 2019, 9, 5136.	1.6	25
103	How much water is in the tank? An allometric analysis with 205 bromeliad species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 264, 151557.	0.6	25
104	Water relations and hydraulic architecture of woody hemiepiphytes. Journal of Experimental Botany, 1997, 48, 1825-1833.	2.4	24
105	Seasonal Changes in Diel CO2Exchange of Three Central European Moss Species: a One-Year Field Study. Plant Biology, 2001, 3, 661-669.	1.8	24
106	Differences in desiccation tolerance do not explain altitudinal distribution patterns of tropical bryophytes. Journal of Bryology, 2013, 35, 47-56.	0.4	24
107	Composition patterns and network structure of epiphyte–host interactions in Chilean and New Zealand temperate forests. New Zealand Journal of Botany, 2016, 54, 204-222.	0.8	24
108	Effects of forestâ€use intensity on vascular epiphyte diversity along an elevational gradient. Diversity and Distributions, 2020, 26, 4-15.	1.9	24

#	Article	IF	CITATIONS
109	Macrolichens of Montane Rain Forests in Panama, Province ChiriquÃ- Lichenologist, 2000, 32, 539-551.	0.5	23
110	Growth and survival of <i>Tillandsia flexuosa</i> on electrical cables in Panama. Journal of Tropical Ecology, 2010, 26, 123-126.	0.5	23
111	Effects of an Epiphytic Orchid on Arboreal Ant Community Structure in Panama. Biotropica, 2011, 43, 731-737.	0.8	23
112	Heteroblasty in bromeliads - anatomical, morphological and physiological changes in ontogeny are not related to the change from atmospheric to tank form. Functional Plant Biology, 2013, 40, 251.	1.1	23
113	Physiological Ecology of Tropical Bryophytes. Advances in Photosynthesis and Respiration, 2014, , 269-289.	1.0	23
114	The temperature acclimation potential of tropical bryophytes. Plant Biology, 2014, 16, 117-124.	1.8	22
115	EpIGâ€DB: A database of vascular epiphyte assemblages in the Neotropics. Journal of Vegetation Science, 2020, 31, 518-528.	1.1	22
116	Tropical epiphytes in a CO2-rich atmosphere. Acta Oecologica, 2009, 35, 60-68.	0.5	21
117	Heterogeneity within and among co-occurring foundation species increases biodiversity. Nature Communications, 2022, 13, 581.	5.8	21
118	Growth and survival of aerial roots of hemiepiphytes in a lower montane tropical moist forest in Panama. Journal of Tropical Ecology, 1999, 15, 651-665.	0.5	20
119	Physiological diversity and biogeography of vascular epiphytes at RÃo Changuinola, Panama. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 66-79.	0.6	20
120	Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico. Planta, 2015, 242, 1425-1438.	1.6	20
121	Accidental epiphytism in the Harz Mountains, Central Europe. Journal of Vegetation Science, 2019, 30, 765-775.	1.1	20
122	Functional traits are key to understanding orchid diversity on islands. Ecography, 2021, 44, 703-714.	2.1	20
123	How Diverse are Epiphyte Assemblages in Plantations and Secondary Forests in Tropical Lowlands?. Tropical Conservation Science, 2016, 9, 629-647.	0.6	19
124	"No signs of saturationâ€: long-term dynamics of vascular epiphyte communities in a human-modified landscape. Biodiversity and Conservation, 2017, 26, 1393-1410.	1.2	19
125	Seasonal Changes in Daytime Versus Nighttime CO2 Fixation of Clusia uvitana In Situ. Ecological Studies, 1996, , 312-323.	0.4	19
126	Putting vascular epiphytes on the traits map. Journal of Ecology, 2022, 110, 340-358.	1.9	19

#	Article	IF	CITATIONS
127	Ecophysiological consequences of differences in plant size: abscisic acid relationships in the epiphytic orchid Dimerandra emarginata. Oecologia, 2001, 129, 179-185.	0.9	18
128	Do non-myrmocophilic epiphytes influence community structure of arboreal ants?. Basic and Applied Ecology, 2003, 4, 363-373.	1.2	18
129	Differences in vital demographic rates in three populations of the epiphytic bromeliad, Werauhia sanguinolenta. Acta Oecologica, 2005, 28, 306-312.	0.5	18
130	Including dynamics in the equation: Tree growth rates and host specificity of vascular epiphytes. Journal of Ecology, 2020, 108, 761-773.	1.9	17
131	Size-related intraspecific variability in physiological traits of vascular epiphytes and its importance for plant physiological ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3, 19-28.	1.1	16
132	Vascular epiphytes at the treeline – composition of species assemblages and population biology. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 385-390.	0.6	16
133	Growth responses to elevated temperatures and the importance of ontogenetic niche shifts in Bromeliaceae. New Phytologist, 2018, 217, 127-139.	3.5	16
134	6-Hydroxyluteolin-7-O-(1′′-α-rhamnoside) from Vriesea sanguinolenta Cogn. and Marchal (Bromeliaceae). Phytochemistry, 2000, 53, 965-969.	1.4	15
135	Seed comas of bromeliads promote germination and early seedling growth by wick-like water uptake. Journal of Tropical Ecology, 2011, 27, 115-119.	0.5	15
136	Heteroblasty in Bromeliads: Its Frequency in a Local Flora and the Timing of the Transition from Atmospheric to Tank Form in the Field. International Journal of Plant Sciences, 2012, 173, 780-788.	0.6	15
137	Functional trait dimensions of trophic metacommunities. Ecography, 2021, 44, 1486-1500.	2.1	15
138	Respuestas fisiológicas a la sequÃa, de cinco especies de orquÃdeas epÃfitas, en dos selvas secas de la penÃnsula de Yucatán. Botanical Sciences, 2014, 92, 607-616.	0.3	15
139	Size-Related Differences in Carbon Isotope Discrimination in the Epiphytic Orchid, Dimerandra emarginata. Die Naturwissenschaften, 1999, 86, 39-40.	0.6	14
140	Leaf Phenology and Seasonal Carbon Gain in the Invasive Plant, Bunias orientalis L Plant Biology, 2000, 2, 653-658.	1.8	14
141	Dispersal and establishment of vascular epiphytes in human-modified landscapes. AoB PLANTS, 2017, 9, plx052.	1.2	14
142	Not so stressful after all: Epiphytic individuals of accidental epiphytes experience more favourable abiotic conditions than terrestrial conspecifics. Forest Ecology and Management, 2021, 479, 118529.	1.4	14
143	Functional Traits of a Rainforest Vascular Epiphyte Community: Trait Covariation and Indications for Host Specificity. Diversity, 2021, 13, 97.	0.7	14
144	Phytic acid in green leaves of herbaceous plantstemporal variation in situ and response to different nitrogen/phosphorus fertilizing regimes. AoB PLANTS, 2014, 6, plu048-plu048.	1.2	13

#	Article	IF	CITATIONS
145	Measuring the terminal velocity of tiny diaspores. Seed Science Research, 2016, 26, 222-230.	0.8	13
146	What´s in the tank? Nematodes and other major components of the meiofauna of bromeliad phytotelms in lowland Panama. BMC Ecology, 2016, 16, 9.	3.0	13
147	Epiphytic bromeliads in a changing world: the effect of elevated <scp>CO</scp> ₂ and varying water supply on growth and nutrient relations. Plant Biology, 2018, 20, 636-640.	1.8	13
148	Modeling community assembly on growing habitat "islands― a case study on trees and their vascular epiphyte communities. Theoretical Ecology, 2019, 12, 513-529.	0.4	13
149	Carbon relations of fruits of epiphytic orchids. Flora: Morphology, Distribution, Functional Ecology of Plants, 2003, 198, 98-105.	0.6	12
150	Photosynthetic Induction and Leaf Carbon Gain in the Tropical Understorey Epiphyte, Aspasia principissa. Annals of Botany, 2003, 91, 353-359.	1.4	12
151	Do Growth and Survival of Aerial Roots Limit the Vertical Distribution of Hemiepiphytic Aroids?1. Biotropica, 2004, 36, 483.	0.8	12
152	Species Richness and Biomass of Epiphytic Vegetation in a Tropical Montane Forest in Western Panama. Tropical Conservation Science, 2017, 10, 194008291769846.	0.6	12
153	Seed traits favouring dispersal and establishment of six epiphytic <i>Tillandsia</i> (Bromeliaceae) species. Seed Science Research, 2018, 28, 349-359.	0.8	12
154	Drought resistance does not explain epiphytic abundance of accidental epiphytes. Plant Ecology and Diversity, 2020, 13, 175-187.	1.0	12
155	CO2 gas exchange and the occurrence of CAM in tropical woody hemiepiphytes. Flora: Morphology, Distribution, Functional Ecology of Plants, 1997, 192, 143-150.	0.6	11
156	Cetoniinae Developing in a Living Stalk of Bromeliaceae (Coleoptera: Scarabaeidae: Cetoniinae:) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50 3
157	Categories and CAM - blurring divisions, increasing understanding?. New Phytologist, 2002, 156, 4-6.	3.5	11
158	Do Growth and Survival of Aerial Roots Limit the Vertical Distribution of Hemiepiphytic Aroids?. Biotropica, 2004, 36, 483-491.	0.8	11
159	How to minimize the sampling effort for obtaining reliable estimates of diel and annual CO ₂ budgets in lichens. Lichenologist, 2010, 42, 97-111.	0.5	11
160	The influence of collecting date, temperature and moisture regimes on the germination of epiphytic bromeliads. Seed Science Research, 2014, 24, 353-363.	0.8	11
161	Community structure of vascular epiphytes: a neutral perspective. Oikos, 2020, 129, 853-867.	1.2	11
162	Seedling stability in waterlogged sediments: an experiment with saltmarsh plants. Marine Ecology - Progress Series, 2018, 590, 95-108.	0.9	11

#	Article	IF	CITATIONS
163	Latitudinal variation in the degree of crassulacean acid metabolism in <i><scp>P</scp>uya chilensis</i> . Plant Biology, 2014, 16, 848-852.	1.8	10
164	Epiphytes in human settlements in rural Panama. Plant Ecology and Diversity, 2016, 9, 277-287.	1.0	10
165	Chemical composition of cell walls in velamentous roots of epiphytic Orchidaceae. Protoplasma, 2020, 257, 103-118.	1.0	10
166	Agentâ€based modeling of the effects of forest dynamics, selective logging, and fragment size on epiphyte communities. Ecology and Evolution, 2021, 11, 2937-2951.	0.8	10
167	Carbohydrate reserves in the facilitator cushion plant Laretia acaulis suggest carbon limitation at high elevation and no negative effects of beneficiary plants. Oecologia, 2017, 183, 997-1006.	0.9	9
168	Physiological plasticity of epiphytic orchids from two contrasting tropical dry forests. Acta Oecologica, 2017, 85, 25-32.	0.5	9
169	Dew Can Prolong Photosynthesis and Water Status During Drought in Some Epiphytic Bromeliads From a Seasonally Dry Tropical Forest. Tropical Conservation Science, 2019, 12, 194008291987005.	0.6	9
170	What Is a Pseudobulb? Toward a Quantitative Definition. International Journal of Plant Sciences, 2020, 181, 686-696.	0.6	9
171	Longâ€ŧerm community dynamics in vascular epiphytes on <i>Annona glabra</i> along the shoreline of Barro Colorado Island, Panama. Journal of Ecology, 2021, 109, 1931-1946.	1.9	9
172	Variaci $ ilde{A}^3$ n biol $ ilde{A}^3$ gica en las ar $ ilde{A}_i$ ceas trepadoras. Acta Botanica Mexicana, 2021, , .	0.1	9
173	Inherently slow growth in two Caribbean epiphytic species: A demographic approach. , 2002, 13, 527.		9
174	Predicting annual carbon balance from leaf nitrogen. Die Naturwissenschaften, 1994, 81, 449-449.	0.6	8
175	Plant size: an ignored parameter in epiphyte ecophysiology?. Forestry Sciences, 2001, , 65-72.	0.4	8
176	Heteroblasty in epiphytic bromeliads: functional implications for species in understorey and exposed growing sites. Annals of Botany, 2017, 120, 681-692.	1.4	8
177	Responses of Tree Seedlings near the Alpine Treeline to Delayed Snowmelt and Reduced Sky Exposure. Forests, 2018, 9, 12.	0.9	8
178	Microsites and early litter decomposition patterns in the soil and forest canopy at regional scale. Biogeochemistry, 2020, 151, 15-30.	1.7	8
179	The population structure of the vascular epiphytes in a lowland forest in Panama correlates with species abundance. Journal of Tropical Ecology, 2007, 23, 337-342.	0.5	7
180	What is the proximate cause for sizeâ€dependent ecophysiological differences in vascular epiphytes?. Plant Biology, 2011, 13, 902-908.	1.8	7

#	Article	IF	CITATIONS
181	Abundance and seasonal growth of epiphytic ferns at three sites along a rainfall gradient in Western Europe. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 274, 151749.	0.6	7
182	Effects of fungal inoculation on the growth of Salicornia (Amaranthaceae) under different salinity conditions. Symbiosis, 2021, 84, 195-208.	1.2	7
183	Leaf trait coâ€variation and tradeâ€offs in gallery forest C ₃ and CAM epiphytes. Biotropica, 2021, 53, 520-535.	0.8	6
184	Variation in root morphology of epiphytic orchids along small-scale and large-scale moisture gradients. Acta Botanica Brasilica, 2020, 34, 66-73.	0.8	6
185	Do secondary hemiepiphytes exist?. Journal of Tropical Ecology, 2021, 37, 286-290.	0.5	6
186	Accidental epiphytes: Ecological insights and evolutionary implications. Ecological Monographs, 0, , .	2.4	6
187	Long-term changes of the vascular epiphyte assemblage on the palm Socratea exorrhiza in a lowland forest in Panama. Journal of Vegetation Science, 2006, 17, 307.	1.1	5
188	The effect of exposure to sea water on germination and vegetative growth of an epiphytic bromeliad. Journal of Tropical Ecology, 2009, 25, 311-319.	0.5	5
189	Drought, postâ€dispersal seed predation, and the establishment of epiphytic bromeliads (<i>Tillandsia</i> spp.). Biotropica, 2017, 49, 770-773.	0.8	5
190	The biogeography of the megadiverse genus <i>Anthurium</i> (Araceae). Botanical Journal of the Linnean Society, 2020, 194, 164-176.	0.8	5
191	Co with the flow: The extent of drag reduction as epiphytic bromeliads reorient in wind. PLoS ONE, 2021, 16, e0252790.	1.1	5
192	Directional changes over time in the species composition of tropical vascular epiphyte assemblages. Journal of Ecology, 2022, 110, 553-568.	1.9	5
193	Litterâ€ŧrapping tank bromeliads in five different forests: Carbon and nutrient pools and fluxes. Biotropica, 2022, 54, 170-180.	0.8	5
194	Another woody hemiepiphyte with CAM: Havetiopsis flexilis Spruce ex Planch. et Tr. (Clusiaceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 1999, 194, 215-220.	0.6	4
195	Temperature dependence of germination and growth in Anthurium (Araceae). Plant Biology, 2020, 22, 184-190.	1.8	4
196	Vascular Epiphyte Assemblages on Isolated Trees along an Elevational Gradient in Southwest Panama. Diversity, 2021, 13, 49.	0.7	4
197	Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns. Ecological Modelling, 2021, 460, 109735.	1.2	4
198	Biovera-Epi: A new database on species diversity, community composition and leaf functional traits of vascular epiphytes along gradients of elevation and forest-use intensity in Mexico. Biodiversity Data Journal, 2021, 9, e71974.	0.4	4

#	Article	IF	CITATIONS
199	Biochemical, cellular and molecular aspects of Cymbidium orchids: an ecological and economic overview. Acta Physiologiae Plantarum, 2022, 44, 1.	1.0	4
200	The Role of Vascular Epiphytes in the Ecosystem. Fascinating Life Sciences, 2016, , 229-243.	0.5	3
201	Growth of <i>Rhizocarpon geographicum</i> in the summit region of Volcan Barú, Panama. Lichenologist, 2017, 49, 535-538.	0.5	3
202	Phytate in seeds of wild plants. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 244-245, 15-18.	0.6	3
203	Bromeliad Sampling: A Passive Technique for Arboreal Amphibians across Ecosystems in the Neotropics. Ichthyology and Herpetology, 2021, 109, .	0.3	3
204	Water relations and hydraulic architecture of woody hemiepiphytes. Journal of Experimental Botany, 1997, 48, 1825-1833.	2.4	3
205	Getting a Grip on the Adhesion Mechanism of Epiphytic Orchids – Evidence From Histology and Cryo-Scanning Electron Microscopy. Frontiers in Forests and Global Change, 2021, 4, .	1.0	3
206	The Impact of a Severe El Niño Event on Vascular Epiphytes in Lowland Panama. Diversity, 2022, 14, 325.	0.7	3
207	Broad―and smallâ€scale environmental gradients drive variation in chemical, but not morphological, leaf traits of vascular epiphytes. Functional Ecology, 2022, 36, 1858-1872.	1.7	3
208	Epiphyte Taxonomy and Evolutionary Trends. Fascinating Life Sciences, 2016, , 13-49.	0.5	2
209	Biogeography: Latitudinal and Elevational Trends. Fascinating Life Sciences, 2016, , 51-66.	0.5	2
210	Functional Anatomy and Morphology. Fascinating Life Sciences, 2016, , 67-93.	0.5	2
211	Physiological Ecology. Fascinating Life Sciences, 2016, , 95-148.	0.5	2
212	Interactions with Other Organisms. Fascinating Life Sciences, 2016, , 203-227.	0.5	2
213	Epiphytes and Humans. Fascinating Life Sciences, 2016, , 245-265.	0.5	2
214	Thigmomorphogenic responses of epiphytic bromeliads to mechanically induced stress. Plant Ecology, O, , 1.	0.7	2
215	Simulating climate change in situ in a tropical rainforest understorey using active air warming and CO 2 addition. Ecology and Evolution, 2022, 12, e8406.	0.8	2
216	Holding on or falling off: the attachment mechanism of epiphytic <i>Anthurium obtusum</i> (Engl.) Grayum changes with substrate roughness. American Journal of Botany, 0, , .	0.8	2

#	Article	IF	CITATIONS
217	A cool experimental approach to explain elevational treelines, but can it explain them?. American Journal of Botany, 2014, 101, 1403-1408.	0.8	1
218	Epilogue: The Epiphyte Syndrome. Fascinating Life Sciences, 2016, , 267-272.	0.5	1
219	Epiphyte Communities. Fascinating Life Sciences, 2016, , 167-202.	0.5	1
220	Population Biology. Fascinating Life Sciences, 2016, , 149-166.	0.5	1
221	What happens to epiphytic bromeliads in a windy spot?. Journal of Tropical Ecology, 0, , 1-6.	0.5	1
222	Cellular Growth in Aerial Roots Differs From That in Typical Substrate Roots. Frontiers in Plant Science, 2022, 13, .	1.7	1
223	The relationship between maximum in situ rates of CO2 gas exchange and leaf carbon budgets in tropical gap plants of the genus Macaranga. Flora: Morphology, Distribution, Functional Ecology of Plants, 2001, 196, 364-369.	0.6	0
224	Is <i>Pitcairnia halophila</i> really a halophyte? Evidence from a germination and growth experiment. Journal of Tropical Ecology, 0, , 1-8.	0.5	0
225	Predicting Annual Carbon Balance from Leaf Nitrogen. Die Naturwissenschaften, 1994, 81, 449-449.	0.6	0