Antonio J Giraldez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs. Science, 2006, 312, 75-79.	6.0	1,405
2	MicroRNAs Regulate Brain Morphogenesis in Zebrafish. Science, 2005, 308, 833-838.	6.0	1,209
3	CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods, 2015, 12, 982-988.	9.0	1,024
4	Genetic compensation triggered by mutant mRNA degradation. Nature, 2019, 568, 193-197.	13.7	734
5	A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity. Science, 2010, 328, 1694-1698.	6.0	718
6	Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish. Science, 2012, 336, 233-237.	6.0	629
7	Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO Journal, 2014, 33, 981-993.	3.5	587
8	Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods, 2011, 8, 67-69.	9.0	480
9	Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430. Science, 2007, 318, 271-274.	6.0	478
10	Zygotic Genome Activation During the Maternal-to-Zygotic Transition. Annual Review of Cell and Developmental Biology, 2014, 30, 581-613.	4.0	469
11	Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 2013, 503, 360-364.	13.7	399
12	Upstream <scp>ORF</scp> s are prevalent translational repressors in vertebrates. EMBO Journal, 2016, 35, 706-723.	3.5	288
13	Differential Regulation of Germline mRNAs in Soma and Germ Cells by Zebrafish miR-430. Current Biology, 2006, 16, 2135-2142.	1.8	280
14	Members of the miRNA-200 Family Regulate Olfactory Neurogenesis. Neuron, 2008, 57, 41-55.	3.8	245
15	Codon identity regulates <scp>mRNA</scp> stability and translation efficiency during the maternalâ€ŧoâ€zygotic transition. EMBO Journal, 2016, 35, 2087-2103.	3.5	236
16	CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nature Communications, 2017, 8, 2024.	5.8	232
17	HSPC Modification by the Secreted Enzyme Notum Shapes the Wingless Morphogen Gradient. Developmental Cell, 2002, 2, 667-676.	3.1	227
18	Opposing Activities of Dally-like Glypican at High and Low Levels of Wingless Morphogen Activity. Developmental Cell, 2004, 7, 503-512.	3.1	202

ANTONIO J GIRALDEZ

#	Article	IF	CITATIONS
19	Estrogens Suppress a Behavioral Phenotype in Zebrafish Mutants of the Autism Risk Gene, CNTNAP2. Neuron, 2016, 89, 725-733.	3.8	170
20	Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. Nature, 2016, 535, 294-298.	13.7	151
21	Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes and Development, 2009, 23, 619-632.	2.7	149
22	Poly(A)-Specific Ribonuclease Mediates 3′-End Trimming of Argonaute2-Cleaved Precursor MicroRNAs. Cell Reports, 2013, 5, 715-726.	2.9	131
23	Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development (Cambridge), 2003, 130, 6533-6543.	1.2	130
24	miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration. Nature Genetics, 2011, 43, 204-211.	9.4	110
25	Brd4 and P300 Confer Transcriptional Competency during Zygotic Genome Activation. Developmental Cell, 2019, 49, 867-881.e8.	3.1	108
26	The Maternal-to-Zygotic Transition During Vertebrate Development. Current Topics in Developmental Biology, 2015, 113, 191-232.	1.0	98
27	Quantifying the effect of experimental perturbations at single-cell resolution. Nature Biotechnology, 2021, 39, 619-629.	9.4	98
28	miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development (Cambridge), 2012, 139, 4356-4365.	1.2	97
29	Nodal Stability Determines Signaling Range. Current Biology, 2005, 15, 31-36.	1.8	93
30	Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nature Structural and Molecular Biology, 2018, 25, 677-686.	3.6	90
31	Adenylation of Maternally Inherited MicroRNAs by Wispy. Molecular Cell, 2014, 56, 696-707.	4.5	87
32	Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nature Protocols, 2011, 6, 2035-2049.	5.5	79
33	Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish. Development (Cambridge), 2011, 138, 4555-4564.	1.2	78
34	Optimized CRISPR–Cas9 System for Genome Editing in Zebrafish. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot086850.	0.2	67
35	Ythdf m6A Readers Function Redundantly during Zebrafish Development. Cell Reports, 2020, 33, 108598.	2.9	67
36	MicroRNA Function and Mechanism: Insights from Zebra Fish. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 195-203.	2.0	66

ANTONIO J GIRALDEZ

#	Article	IF	CITATIONS
37	microRNAs, the cell's Nepenthe: clearing the past during the maternal-to-zygotic transition and cellular reprogramming. Current Opinion in Genetics and Development, 2010, 20, 369-375.	1.5	59
38	Genome wide analysis of 3′ UTR sequence elements and proteins regulating mRNA stability during maternal-to-zygotic transition in zebrafish. Genome Research, 2019, 29, 1100-1114.	2.4	49
39	miR-1-2 Gets to the Heart of the Matter. Cell, 2007, 129, 247-249.	13.5	42
40	Successful amplification of DNA aboard the International Space Station. Npj Microgravity, 2017, 3, 26.	1.9	39
41	Optimized CRISPR-Cpf1 system for genome editing in zebrafish. Methods, 2018, 150, 11-18.	1.9	38
42	The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation. Molecular Cell, 2022, 82, 986-1002.e9.	4.5	38
43	miR-430 regulates oriented cell division during neural tube development in zebrafish. Developmental Biology, 2016, 409, 442-450.	0.9	35
44	Precise SDF1-mediated cell guidance is achieved through ligand clearance and microRNA-mediated decay. Journal of Cell Biology, 2013, 200, 337-355.	2.3	34
45	RESA identifies mRNA-regulatory sequences at high resolution. Nature Methods, 2017, 14, 201-207.	9.0	34
46	MicroRNAs as genetic sculptors: Fishing for clues. Seminars in Cell and Developmental Biology, 2010, 21, 760-767.	2.3	30
47	Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of the Nodal inhibitor Dand5. Nature Communications, 2021, 12, 5482.	5.8	24
48	Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nature Communications, 2022, 13, 2601.	5.8	24
49	RES complex is associated with intron definition and required for zebrafish early embryogenesis. PLoS Genetics, 2018, 14, e1007473.	1.5	23
50	A naturally occurring alternative product of the mastermind locus that represses notch signalling. Mechanisms of Development, 2002, 115, 101-105.	1.7	17
51	LabxDB: versatile databases for genomic sequencing and lab management. Bioinformatics, 2020, 36, 4530-4531.	1.8	14
52	RNA Methylation Clears the Way. Developmental Cell, 2017, 40, 427-428.	3.1	10
53	A Functional Non-coding RNA Is Produced from xbp-1 mRNA. Neuron, 2020, 107, 854-863.e6.	3.8	10
54	Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis. Nature Communications, 2021, 12, 6094.	5.8	9

Antonio J Giraldez

#	Article	IF	CITATIONS
55	Optimization Strategies for the CRISPR–Cas9 Genome-Editing System. Cold Spring Harbor Protocols, 2016, 2016, pdb.top090894.	0.2	8
56	A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Developmental Biology, 2022, 484, 1-11.	0.9	8
57	Reply to: "On the robustness of germ cell migration and microRNA-mediated regulation of chemokine signaling". Nature Genetics, 2013, 45, 1266-1267.	9.4	6
58	MicroRNAs Sculpt Gene Expression in Embryonic Development: New Insights from Plants. Developmental Cell, 2011, 20, 3-4.	3.1	5
59	Stage Specific Transcriptomic Analysis and Database for Zebrafish Oogenesis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
60	A group approach to growing as a principal investigator. Current Biology, 2022, 32, R498-R504.	1.8	2
61	Giving translation a hand. Developmental Cell, 2021, 56, 2921-2923.	3.1	0