Milad Kamkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5661014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. Small, 2022, 18, e2102683.	5.2	151
2	Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coordination Chemistry Reviews, 2022, 464, 214562.	9.5	76
3	Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites. Physics of Fluids, 2018, 30, .	1.6	58
4	Viscoelastic properties of poly (vinyl alcohol) hydrogels with cellulose nanocrystals fabricated through sodium chloride addition: Rheological evidence of double network formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125577.	2.3	57
5	High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding. Carbon, 2022, 191, 277-289.	5.4	47
6	A review on novel applications of asphaltenes: A valuable waste. Fuel, 2021, 285, 119272.	3.4	45
7	Prevention of network destruction of partially hydrolyzed polyacrylamide (HPAM): Effects of salt, temperature, and fumed silica nanoparticles. Physics of Fluids, 2019, 31, .	1.6	44
8	Nonlinear viscoelastic characterization of charged cellulose nanocrystal network structure inÂthe presence of salt in aqueous media. Cellulose, 2020, 27, 5729-5743.	2.4	42
9	Multilayer Structures of a Zn _{0.5} Ni _{0.5} Fe ₂ O ₄ -Reduced Graphene Oxide/PVDF Nanocomposite for Tunable and Highly Efficient Microwave Absorbers. ACS Applied Electronic Materials, 2021, 3, 5514-5527.	2.0	40
10	Rheology of fumed silica nanoparticles/partially hydrolyzed polyacrylamide aqueous solutions under small and large amplitude oscillatory shear deformations. Journal of Rheology, 2018, 62, 1197-1216.	1.3	39
11	Structural Characterization of CVD Custom-Synthesized Carbon Nanotube/Polymer Nanocomposites in Large-Amplitude Oscillatory Shear (LAOS) Mode: Effect of Dispersion Characteristics in Confined Geometries. Macromolecules, 2019, 52, 1489-1504.	2.2	39
12	Multilayer polymeric nanocomposites for electromagnetic interference shielding: fabrication, mechanisms, and prospects. New Journal of Chemistry, 2021, 45, 21488-21507.	1.4	34
13	Polymeric-nanofluids stabilized emulsions: Interfacial versus bulk rheology. Journal of Colloid and Interface Science, 2020, 576, 252-263.	5.0	32
14	Nanoparticle effects of thermoplastic polyurethane on kinetics of microphase separation, with or without preshear. Polymer Composites, 2018, 39, 4551-4559.	2.3	31
15	Tailoring MWCNT Dispersion, Blend Morphology and EMI Shielding Properties by Sequential Mixing Strategy in Immiscible PS/PVDF Blends. Journal of Electronic Materials, 2020, 49, 1588-1600.	1.0	31
16	The key role of processing in tuning nonlinear viscoelastic properties and microwave absorption in CNT-based polymer nanocomposites. Materials Today Communications, 2020, 24, 101010.	0.9	31
17	A review of low-temperature H ₂ S gas sensors: fabrication and mechanism. New Journal of Chemistry, 2021, 45, 17727-17752.	1.4	30
18	Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Biomedical Materials (Bristol), 2021, 16, 015021.	1.7	30

MILAD KAMKAR

#	Article	IF	CITATIONS
19	Large amplitude oscillatory shear flow: Microstructural assessment of polymeric systems. Progress in Polymer Science, 2022, 132, 101580.	11.8	27
20	Tuning the Network Structure of Graphene/Epoxy Nanocomposites by Controlling Edge/Basal Localization of Functional Groups. Industrial & Engineering Chemistry Research, 2019, 58, 21431-21440.	1.8	24
21	Viscoelastic behavior of covalently crosslinked hydrogels under large shear deformations: An approach to eliminate wall slip. Physics of Fluids, 2021, 33, .	1.6	20
22	Intra-Cycle Elastic Nonlinearity of Nitrogen-Doped Carbon Nanotube/Polymer Nanocomposites under Medium Amplitude Oscillatory Shear (MAOS) Flow. Nanomaterials, 2020, 10, 1257.	1.9	19
23	Suspensions and hydrogels of cellulose nanocrystals (CNCs): characterization using microscopy and rheology. Cellulose, 2022, 29, 3621-3653.	2.4	18
24	A novel electrically conductive water borne epoxy nanocomposite coating based on graphene: facile method and high efficient graphene dispersion. Progress in Organic Coatings, 2019, 136, 105223.	1.9	17
25	Scalable manufacturing of flexible and highly conductive Ti ₃ C ₂ T _{<i>x</i>} /PEDOT:PSS thin films for electromagnetic interference shielding. New Journal of Chemistry, 2021, 45, 20787-20799.	1.4	15
26	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquidâ€inâ€Liquid Printing. Advanced Materials Interfaces, 2022, 9, .	1.9	15
27	Development and Characterization of Stable Polymer Formulations for Manufacturing Magnetic Composites. Journal of Manufacturing and Materials Processing, 2020, 4, 4.	1.0	14
28	Structured Ultraâ€Flyweight Aerogels by Interfacial Complexation: Selfâ€Assembly Enabling Multiscale Designs. Small, 2022, 18, e2200220.	5.2	14
29	Xâ€band dielectric properties of hybrid nanocomposites of nitrogenâ€doped carbon nanotube/functionalized nanoclay/polyvinylidene fluoride nanocomposite. Polymer Composites, 2021, 42, 1034-1048.	2.3	11
30	Dielectrorheology of Aspect-Ratio-Tailored Carbon Nanotube/Polyethylene Composites under Large Deformations: Implications for High-Temperature Dielectrics. ACS Applied Nano Materials, 2021, 4, 11493-11504.	2.4	11
31	Fumed Silica-Based Suspensions for Shear Thickening Applications: A Full-Scale Rheological Study. Langmuir, 2022, 38, 5006-5019.	1.6	11
32	Morphology Evolution, Molecular Simulation, Electrical Properties, and Rheology of Carbon Nanotube/Polypropylene/Polystyrene Blend Nanocomposites: Effect of Molecular Interaction between Styrene-Butadiene Block Copolymer and Carbon Nanotube. Polymers, 2021, 13, 230.	2.0	10
33	Covalently crossâ€inked hydrogels: Mechanisms of nonlinear viscoelasticity. Canadian Journal of Chemical Engineering, 2022, 100, 3227-3239.	0.9	8
34	Waste to Value-Added Product: Developing Electrically Conductive Nanocomposites Using a Non-Recyclable Plastic Waste Containing Vulcanized Rubber. Polymers, 2021, 13, 2427.	2.0	5
35	A Simple Approach to Control the Physical and Chemical Features of Custom-Synthesized N-Doped Carbon Nanotubes and the Extent of Their Network Formation in Polymers: The Importance of Catalyst to Substrate Ratio. Polymers, 2021, 13, 4156.	2.0	2
36	Advanced 3D Printed Conductive Polymer Nanocomposites for Electromagnetic Shielding. , 2021, , .		1

#	Article	IF	CITATIONS
37	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquidâ€inâ€Liquid Printing (Adv.) Tj ET	Qq1,1 0.78	84314 rgBT
38	Structured Ultraâ€Flyweight Aerogels by Interfacial Complexation: Selfâ€Assembly Enabling Multiscale Designs (Small 20/2022). Small, 2022, 18, .	5.2	1
39	Epoxy/CNT-Zn0.5Ni0.5Fe2O4 Multilayer Polymeric Nanocomposites for Electromagnetic Wave Absorption. , 2021, , .		0
40	3D printing of transparent pH-mediated high-water-content hydrogels for electromagnetic interference (EMI) shielding. , 2021, , .		0