Rance Nault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5660895/publications.pdf Version: 2024-02-01

RANCE NALLE

#	Article	IF	CITATIONS
1	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited effects on bile acid homeostasis: Alterations in biosynthesis, enterohepatic circulation, and microbial metabolism. Scientific Reports, 2017, 7, 5921.	1.6	62
2	Dose-Dependent Metabolic Reprogramming and Differential Gene Expression in TCDD-Elicited Hepatic Fibrosis. Toxicological Sciences, 2016, 154, 253-266.	1.4	54
3	2,3,7,8-Tetrachlorodibenzo- <i>p</i> -Dioxin Alters Lipid Metabolism and Depletes Immune Cell Populations in the Jejunum of C57BL/6 Mice. Toxicological Sciences, 2015, 148, 567-580.	1.4	52
4	Lipidomic Evaluation of Aryl Hydrocarbon Receptor-Mediated Hepatic Steatosis in Male and Female Mice Elicited by 2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin. Chemical Research in Toxicology, 2017, 30, 1060-1075.	1.7	50
5	Single-Nuclei RNA Sequencing Assessment of the Hepatic Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 147-159.	2.3	42
6	Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity. Toxicology and Applied Pharmacology, 2017, 321, 1-17.	1.3	41
7	Pyruvate Kinase Isoform Switching and Hepatic Metabolic Reprogramming by the Environmental Contaminant 2,3,7,8-Tetrachlorodibenzo- <i>p</i> Dioxin. Toxicological Sciences, 2016, 149, 358-371.	1.4	38
8	Loss of liver-specific and sexually dimorphic gene expression by aryl hydrocarbon receptor activation in C57BL/6 mice. PLoS ONE, 2017, 12, e0184842.	1.1	38
9	2,3,7,8-Tetrachlorodibenzo-p-dioxin abolishes circadian regulation of hepatic metabolic activity in mice. Scientific Reports, 2019, 9, 6514.	1.6	37
10	From the Cover: Coagulation-Driven Hepatic Fibrosis Requires Protease Activated Receptor-1 (PAR-1) in a Mouse Model of TCDD-Elicited Steatohepatitis. Toxicological Sciences, 2016, 154, 381-391.	1.4	32
11	Ozone-Induced Type 2 Immunity in Nasal Airways. Development and Lymphoid Cell Dependence in Mice. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 331-340.	1.4	32
12	RNA-Seq versus oligonucleotide array assessment of dose-dependent TCDD-elicited hepatic gene expression in mice. BMC Genomics, 2015, 16, 373.	1.2	31
13	Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells. Toxicology and Applied Pharmacology, 2017, 316, 95-106.	1.3	31
14	Comparisons of differential gene expression elicited by TCDD, PCB126, βNF, or ICZ in mouse hepatoma Hepa1c1c7 cells and C57BL/6 mouse liver. Toxicology Letters, 2013, 223, 52-59.	0.4	30
15	Fibrin deposition following bile duct injury limits fibrosis through an αMβ2-dependent mechanism. Blood, 2016, 127, 2751-2762.	0.6	30
16	Comparison of Hepatic NRF2 and Aryl Hydrocarbon Receptor Binding in 2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin–Treated Mice Demonstrates NRF2-Independent PKM2 Induction. Molecular Pharmacology, 2018, 94, 876-884.	1.0	23
17	Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice. Toxicology and Applied Pharmacology, 2013, 267, 184-191.	1.3	22
18	Development of a Computational High-Throughput Tool for the Quantitative Examination of Dose-Dependent Histological Features. Toxicologic Pathology, 2015, 43, 366-375.	0.9	22

RANCE NAULT

#	Article	IF	CITATIONS
19	Toxicogenomic Evaluation of Long-term Hepatic Effects of TCDD in Immature, Ovariectomized C57BL/6 Mice. Toxicological Sciences, 2013, 135, 465-475.	1.4	21
20	A toxicogenomic approach for the risk assessment of the food contaminant acetamide. Toxicology and Applied Pharmacology, 2020, 388, 114872.	1.3	18
21	2,3,7,8-Tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice. Toxicology and Applied Pharmacology, 2018, 348, 85-98.	1.3	17
22	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) dysregulates hepatic one carbon metabolism during the progression of steatosis to steatohepatitis with fibrosis in mice. Scientific Reports, 2020, 10, 14831.	1.6	15
23	Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation. Scientific Reports, 2021, 11, 15689.	1.6	14
24	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters hepatic polyunsaturated fatty acid metabolism and eicosanoid biosynthesis in female Sprague-Dawley rats. Toxicology and Applied Pharmacology, 2020, 398, 115034.	1.3	13
25	The food contaminant acetamide is not an in vivo clastogen, aneugen, or mutagen in rodent hematopoietic tissue. Regulatory Toxicology and Pharmacology, 2019, 108, 104451.	1.3	8
26	Benchmarking of a Bayesian single cell RNAseq differential gene expression test for dose–response study designs. Nucleic Acids Research, 2022, 50, e48-e48.	6.5	7
27	Genome-Wide ChIPseq Analysis of AhR, COUP-TF, and HNF4 Enrichment in TCDD-Treated Mouse Liver. International Journal of Molecular Sciences, 2022, 23, 1558.	1.8	5
28	Assessment of energetic costs of AhR activation by β-naphthoflavone in rainbow trout (Oncorhynchus) Tj ETQqC 86-94.	0 0 rgBT 1.3	/Overlock 10 3
29	Genetics-Based Approach to Identify Novel Genes Regulated by the Aryl Hydrocarbon Receptor inÂMouse Liver. Toxicological Sciences, 2021, 181, 285-294.	1.4	3

30Generative Deep Learning of the Single Cell Dose Response of 2,3,7,8 Tetrachlorodibenzo―<i>p</i>0.20.230â€dioxin in Mouse Liver. FASEB Journal, 2022, 36, .0.20