Ram Jiwari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5660702/publications.pdf Version: 2024-02-01

Ραγι Ιινλαρι

#	Article	IF	CITATIONS
1	A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation. Computer Physics Communications, 2012, 183, 2413-2423.	7.5	156
2	Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Computer Physics Communications, 2012, 183, 600-616.	7.5	134
3	A hybrid numerical scheme for the numerical solution of the Burgers' equation. Computer Physics Communications, 2015, 188, 59-67.	7.5	126
4	A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions. Applied Mathematics and Computation, 2012, 218, 7279-7294.	2.2	99
5	A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers' equation. Applied Mathematics and Computation, 2013, 219, 6680-6691.	2.2	83
6	A differential quadrature method for numerical solutions of Burgers'â€ŧype equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 880-895.	2.8	70
7	An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers' equation. Applied Mathematics and Computation, 2016, 290, 111-124.	2.2	67
8	Numerical solution of two-dimensional reaction–diffusion Brusselator system. Applied Mathematics and Computation, 2011, 217, 5404-5415.	2.2	60
9	Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions. Computer Physics Communications, 2015, 193, 55-65.	7.5	60
10	Differential Quadrature Method for Two-Dimensional Burgers' Equations. International Journal for Computational Methods in Engineering Science and Mechanics, 2009, 10, 450-459.	2.1	45
11	Haar wavelets operational matrix based algorithm for computational modelling of hyperbolic type wave equations. Engineering Computations, 2017, 34, 2793-2814.	1.4	42
12	Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients. Nonlinear Dynamics, 2015, 79, 455-464.	5.2	40
13	Finite element analysis and approximation of Burgers'â€Fisher equation. Numerical Methods for Partial Differential Equations, 2017, 33, 1652-1677.	3.6	40
14	A computational modeling of two dimensional reaction–diffusion Brusselator system arising in chemical processes. Journal of Mathematical Chemistry, 2014, 52, 1535-1551.	1.5	38
15	Differential Quadrature Method for Numerical Solution of Coupled Viscous Burgers' Equations. International Journal for Computational Methods in Engineering Science and Mechanics, 2012, 13, 88-92.	2.1	33
16	Dark and bright soliton solutions and computational modeling of nonlinear regularized long wave model. Nonlinear Dynamics, 2021, 104, 661-682.	5.2	32
17	A numerical scheme based on differential quadrature method to solve time dependent Burgers' equation. Engineering Computations, 2012, 30, 117-131.	1.4	31
18	Polynomial differential quadrature method for numerical solutions of the generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Ain Shams Engineering Journal, 2014, 5, 1343-1350.	6.1	31

Ram Jiwari

#	Article	IF	CITATIONS
19	Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin—Bona—Mahony—Burger (BBMB) Equation. Communications in Theoretical Physics, 2013, 60, 175-182.	2.5	30
20	A finite element approach for analysis and computational modelling of coupled reaction diffusion models. Numerical Methods for Partial Differential Equations, 2019, 35, 830-850.	3.6	30
21	A numerical scheme based on differential quadrature method for numerical simulation of nonlinear Klein-Gordon equation. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 1390-1404.	2.8	29
22	Numerical simulation to capture the pattern formation of coupled reaction-diffusion models. Chaos, Solitons and Fractals, 2017, 103, 422-439.	5.1	28
23	Lie group analysis, exact solutions and conservation laws to compressible isentropic Navier–Stokes equation. Engineering With Computers, 2022, 38, 2027-2036.	6.1	27
24	Meshfree algorithms based on radial basis functions for numerical simulation and to capture shocks behavior of Burgers' type problems. Engineering Computations, 2019, 36, 1142-1168.	1.4	26
25	Cosine expansion based differential quadrature algorithm for numerical simulation of two dimensional hyperbolic equations with variable coefficients. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1574-1589.	2.8	25
26	Some soliton-type analytical solutions and numerical simulation of nonlinear Schrödinger equation. Nonlinear Dynamics, 2019, 95, 2825-2836.	5.2	23
27	Numerical simulation for computational modelling of reaction–diffusion Brusselator model arising in chemical processes. Journal of Mathematical Chemistry, 2019, 57, 149-179.	1.5	22
28	A class of numerical algorithms based on cubic trigonometric B-spline functions for numerical simulation of nonlinear parabolic problems. Computational and Applied Mathematics, 2019, 38, 1.	2.2	21
29	Numerical simulation of two dimensional quasilinear hyperbolic equations by polynomial differential quadrature method. Engineering Computations, 2013, 30, 892-909.	1.4	20
30	Barycentric rational interpolation and local radial basis functions based numerical algorithms for multidimensional <scp>sineâ€Gordon</scp> equation. Numerical Methods for Partial Differential Equations, 2021, 37, 1965-1992.	3.6	19
31	A Higher Order Numerical Scheme for Some Nonlinear Differential Equations: Models in Biology. International Journal for Computational Methods in Engineering Science and Mechanics, 2011, 12, 134-140.	2.1	18
32	A numerical algorithm for computation modelling of 3D nonlinear wave equations based on exponential modified cubic B-spline differential quadrature method. International Journal of Computer Mathematics, 2018, 95, 752-766.	1.8	18
33	A finite element approach to capture Turing patterns of autocatalytic Brusselator model. Journal of Mathematical Chemistry, 2019, 57, 769-789.	1.5	18
34	A new algorithm based on modified trigonometric cubic B-splines functions for nonlinear Burgers'-type equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1638-1661.	2.8	17
35	A meshfree approach for analysis and computational modeling of non-linear SchrĶdinger equation. Computational and Applied Mathematics, 2020, 39, 1	2.2	17
36	Comparative study of travelling-wave and numerical solutions for the coupled short pulse (CSP) equation. Chinese Physics B, 2013, 22, 050201.	1.4	16

Ram Jiwari

#	Article	IF	CITATIONS
37	Radial basis functions based meshfree schemes for the simulation of non-linear extended Fisher–Kolmogorov model. Wave Motion, 2022, 109, 102863.	2.0	16
38	A numerical algorithm for computational modelling of coupled advection-diffusion-reaction systems. Engineering Computations, 2018, 35, 1383-1401.	1.4	14
39	Legendre wavelets based numerical algorithm for simulation of multidimensional Benjamin–Bona–Mahony–Burgers and Sobolev equations. Computers and Mathematics With Applications, 2020, 80, 417-433.	2.7	13
40	Local radial basis function-finite difference based algorithms for singularly perturbed Burgers' model. Mathematics and Computers in Simulation, 2022, 198, 106-126.	4.4	13
41	Numerical Study of Two-Dimensional Reaction-Diffusion Brusselator System by Differential Quadrature Method. International Journal for Computational Methods in Engineering Science and Mechanics, 2011, 12, 14-25.	2.1	12
42	A cubic B-spline quasi-interpolation method for solving two-dimensional unsteady advection diffusion equations. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 4281-4306.	2.8	11
43	A cubic B-spline quasi-interpolation algorithm to capture the pattern formation of coupled reaction-diffusion models. Engineering With Computers, 0, , 1.	6.1	11
44	A local radial basis function differential quadrature semi-discretisation technique for the simulation of time-dependent reaction-diffusion problems. Engineering Computations, 2021, 38, 2666-2691.	1.4	10
45	A hybrid approach based on Legendre wavelet for numerical simulation of Helmholtz equation with complex solution. International Journal of Computer Mathematics, 2022, 99, 2221-2236.	1.8	7
46	A Differential Quadrature based procedure for parameter identification. Applied Mathematics and Computation, 2016, 290, 460-466.	2.2	6
47	A note on numerical solution of classical Darboux problem. Mathematical Methods in the Applied Sciences, 2021, 44, 12998-13007.	2.3	6
48	Conversion of fuzzy automata into fuzzy regular expressions using transitive closure. Journal of Intelligent and Fuzzy Systems, 2016, 30, 3123-3129.	1.4	5
49	A Comparative Study of Cubic B-spline-Based Quasi-interpolation and Differential Quadrature Methods for Solving Fourth-Order Parabolic PDEs. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2021, 91, 461-474.	1.2	5
50	Local RBF-FD-Based Mesh-free Scheme for Singularly Perturbed Convection-Diffusion-Reaction Models with Variable Coefficients. Journal of Mathematics, 2022, 2022, 1-11.	1.0	3
51	Analyzing Similarity Solution of Modified Fisher Equation. Journal of Mathematics, 2022, 2022, 1-9.	1.0	2
52	Parallel Fuzzy Regular Expression and its Conversion to Epsilon-Free Fuzzy Automaton. Computer Journal, 2016, 59, 1383-1391.	2.4	1
53	Wavelet Operational Matrices and Lagrange Interpolation Differential Quadrature-Based Numerical Algorithms for Simulation of Nanofluid in Porous Channel. Journal of Mathematics, 2022, 2022, 1-14.	1.0	1
54	Recent Trends in Computational and Theoretical Aspects in Differential and Difference Equations. Journal of Mathematics, 2017, 2017, 1-1.	1.0	0