
David Marr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5660074/publications.pdf Version: 2024-02-01

Πλυσ Μλαα

#	Article	IF	CITATIONS
1	Multimodal microwheel swarms for targeting in three-dimensional networks. Scientific Reports, 2022, 12, 5078.	3.3	13
2	Breaking the fibrinolytic speed limit with microwheel coâ€delivery of tissue plasminogen activator and plasminogen. Journal of Thrombosis and Haemostasis, 2022, 20, 486-497.	3.8	13
3	Chain Assembly Kinetics from Magnetic Colloidal Spheres. Langmuir, 2022, 38, 5730-5737.	3.5	2
4	Reconfigurable microbots folded from simple colloidal chains. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18186-18193.	7.1	45
5	An experimental design for the control and assembly of magnetic microwheels. Review of Scientific Instruments, 2020, 91, 093701.	1.3	12
6	Microwheels on microroads: Enhanced translation on topographic surfaces. Science Robotics, 2019, 4, .	17.6	41
7	Engineered microparticles and nanoparticles for fibrinolysis. Journal of Thrombosis and Haemostasis, 2019, 17, 2004-2015.	3.8	26
8	ac/dc Magnetic Fields for Enhanced Translation of Colloidal Microwheels. Langmuir, 2019, 35, 3455-3460.	3.5	18
9	Magnetic Microlassos for Reversible Cargo Capture, Transport, and Release. Langmuir, 2017, 33, 5932-5937.	3.5	53
10	Enhanced Fibrinolysis with Magnetically Powered Colloidal Microwheels. Small, 2017, 13, 1700954.	10.0	59
11	Highâ€ŧhroughput linear optical stretcher for mechanical characterization of blood cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 391-397.	1.5	19
12	Non reciprocal skewed rolling of a colloidal wheel due to induced chirality. Soft Matter, 2016, 12, 9314-9320.	2.7	14
13	Characterization of La _{1â^x} Sr _x MnO ₃ perovskite catalysts for hydrogen peroxide reduction. Physical Chemistry Chemical Physics, 2016, 18, 16786-16793.	2.8	16
14	Surface-enabled propulsion and control of colloidal microwheels. Nature Communications, 2016, 7, 10225.	12.8	130
15	Imaging of a linear diode bar for an optical cell stretcher. Biomedical Optics Express, 2015, 6, 807.	2.9	15
16	FACS-style detection for real-time cell viscoelastic cytometry. RSC Advances, 2015, 5, 105636-105642.	3.6	5
17	A simple microfluidic dispenser for single-microparticle and cell samples. Lab on A Chip, 2014, 14, 4673-4679.	6.0	13
18	Measuring cell mechanics by optical alignment compression cytometry. Lab on A Chip, 2013, 13, 1571.	6.0	27

DAVID MARR

#	Article	IF	CITATIONS
19	Viscoelasticity as a Biomarker for High-Throughput Flow Cytometry. Biophysical Journal, 2013, 105, 2281-2288.	0.5	32
20	Erythrocyte deformation in high-throughput optical stretchers. Physical Review E, 2012, 85, 041923.	2.1	11
21	Cell elongation via intrinsic antipodal stretching forces. Physical Review E, 2012, 86, 061901.	2.1	7
22	Single-cell isolation using a DVD optical pickup. Optics Express, 2011, 19, 10377.	3.4	28
23	Cell deformation cytometry using diode-bar optical stretchers. Journal of Biomedical Optics, 2010, 15, 1.	2.6	52
24	Fiber-focused diode bar optical trapping for microfluidic flow manipulation. Applied Physics Letters, 2008, 92, 013904.	3.3	22
25	In situ assembly of linked geometrically coupled microdevices. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20141-20145.	7.1	56
26	Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab on A Chip, 2006, 6, 422.	6.0	187
27	Optical waveguides via viscosity-mismatched microfluidic flows. Applied Physics Letters, 2006, 88, 134109.	3.3	16
28	Two-photon absorption fluorescence imaging to characterize microfluidic device performance. , 2006, , .		0
29	A novel fast-mixing microfluidic device for studying nonequilibrium systems using femtosecond spectroscopies. , 2006, , .		0
30	Hydrodynamic focusing for vacuum-pumped microfluidics. Microfluidics and Nanofluidics, 2005, 1, 280-283.	2.2	91
31	Flow control for capillary-pumped microfluidic systems. Journal of Micromechanics and Microengineering, 2004, 14, 1503-1506.	2.6	59
32	Colloidal Systems for Binary Mixtures Studies. ACS Symposium Series, 2004, , 27-39.	0.5	0
33	Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Optics Express, 2004, 12, 4390.	3.4	160
34	Electric Field-Reversible Three-Dimensional Colloidal Crystals. Langmuir, 2003, 19, 5967-5970.	3.5	60
35	Fabrication of linear colloidal structures for microfluidic applications. Applied Physics Letters, 2002, 81, 1555-1557.	3.3	125
36	Microfluidic Control Using Colloidal Devices. Science, 2002, 296, 1841-1844.	12.6	386

DAVID MARR

#	Article	IF	CITATIONS
37	Laminar-Flow-Based Separations at the Microscale. Biotechnology Progress, 2002, 18, 1439-1442.	2.6	63
38	Electrically Switchable Colloidal Ordering in Confined Geometries. Langmuir, 2001, 17, 2301-2304.	3.5	76
39	Morphological control of mesoscale colloidal models. Fluid Phase Equilibria, 2001, 185, 157-163.	2.5	8
40	Small-Angle Neutron Scattering from Device-Quality a-Si:H and a-Si:D Prepared by PECVD and HWCVD. Materials Research Society Symposia Proceedings, 2000, 609, 1621.	0.1	2
41	Morphology characterization of high-impact resistant polypropylene using AFM and SALS. Journal of Applied Polymer Science, 2000, 78, 452-457.	2.6	5
42	Optical Trapping for the Manipulation of Colloidal Particles. Advanced Materials, 2000, 12, 917-920.	21.0	49
43	Design of a scanning laser optical trap for multiparticle manipulation. Review of Scientific Instruments, 2000, 71, 2196-2200.	1.3	172
44	Tailored Surfaces Using Optically Manipulated Colloidal Particles. Langmuir, 1999, 15, 8565-8568.	3.5	46
45	Morphology Characterization in Multicomponent Macromolecular Systems Using Scanning Probe Phase Microscopy. Langmuir, 1997, 13, 1840-1843.	3.5	22
46	Void Morphology in Polyethylene/Carbon Black Composites. Macromolecules, 1997, 30, 2120-2124.	4.8	32
47	AFM and SALS Characterization of Spherulitic Structure in Polyethylene. Langmuir, 1996, 12, 1084-1087.	3.5	5
48	Morphology Characterization in Multicomponent Polymer Systems using Scanning Probe Microscopy. Materials Research Society Symposia Proceedings, 1996, 461, 211.	0.1	0