Richard P Koche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5659951/publications.pdf

Version: 2024-02-01

85 papers 10,955 citations

42 h-index 71651 76 g-index

103 all docs

103 docs citations

103 times ranked

17592 citing authors

#	Article	IF	CITATIONS
1	TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. Journal of Experimental Medicine, 2022, 219, .	4.2	64
2	Anatomic position determines oncogenic specificity in melanoma. Nature, 2022, 604, 354-361.	13.7	44
3	PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry. Cancer Discovery, 2022, 12, 2120-2139.	7.7	14
4	CRISPR screening uncovers a central requirement for HHEX in pancreatic lineage commitment and plasticity restriction. Nature Cell Biology, 2022, 24, 1064-1076.	4.6	15
5	SWI/SNF Complex Mutations Promote Thyroid Tumor Progression and Insensitivity to Redifferentiation Therapies. Cancer Discovery, 2021, 11, 1158-1175.	7.7	57
6	Plasmacytoid dendritic cell expansion defines a distinct subset of <i>RUNX1</i> -mutated acute myeloid leukemia. Blood, 2021, 137, 1377-1391.	0.6	51
7	A gene–environment-induced epigenetic program initiates tumorigenesis. Nature, 2021, 590, 642-648.	13.7	133
8	Convergent organization of aberrant MYB complex controls oncogenic gene expression in acute myeloid leukemia. ELife, 2021, 10, .	2.8	37
9	LKB1/ <i>STK11</i> Is a Tumor Suppressor in the Progression of Myeloproliferative Neoplasms. Cancer Discovery, 2021, 11, 1398-1410.	7.7	29
10	Therapeutic Efficacy of Combined JAK1/2, Pan-PIM, and CDK4/6 Inhibition in Myeloproliferative Neoplasms. Clinical Cancer Research, 2021, 27, 3456-3468.	3.2	12
11	MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells. Nature Communications, 2021, 12, 3034.	5.8	35
12	HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP. Nature Communications, 2021, 12, 3366.	5.8	27
13	UDP-glucose pyrophosphorylase 2, a regulator of glycogen synthesis and glycosylation, is critical for pancreatic cancer growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2103592118.	3.3	14
14	Developmental chromatin programs determine oncogenic competence in melanoma. Science, 2021, 373, eabc1048.	6.0	80
15	The BMP/SMAD Pathway Is a Key Mediator of Leukemic Transformation of TP53-Mutant Post-MPN AML. Blood, 2021, 138, 626-626.	0.6	2
16	Single Cell ATAC Lineage Deconvolution Reveals Overlapping Subclones in Epigenetically Distinct AML Samples. Blood, 2021, 138, 2381-2381.	0.6	0
17	The High Mobility Group A1 Chromatin Regulator Drives Immune Evasion during MPN Progression By Repressing Genes Involved in Antigen Presentation and Immune Attack. Blood, 2021, 138, 2546-2546.	0.6	0
18	Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nature Genetics, 2020, 52, 29-34.	9.4	193

#	Article	IF	Citations
19	PRMT5 Inhibition Modulates E2F1 Methylation and Gene-Regulatory Networks Leading to Therapeutic Efficacy in JAK2V617F-Mutant MPN. Cancer Discovery, 2020, 10, 1742-1757.	7.7	55
20	Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nature Communications, 2020, 11, 5823.	5.8	104
21	FOXA1 Mutations Reveal Distinct Chromatin Profiles and Influence Therapeutic Response in Breast Cancer. Cancer Cell, 2020, 38, 534-550.e9.	7.7	67
22	Loss of H3K36 Methyltransferase SETD2 Impairs V(D)J Recombination during Lymphoid Development. IScience, 2020, 23, 100941.	1.9	6
23	Leukemia Cell of Origin Influences Apoptotic Priming and Sensitivity to LSD1 Inhibition. Cancer Discovery, 2020, 10, 1500-1513.	7.7	24
24	Synergistic targeting of <i>FLT3</i> mutations in AML via combined menin-MLL and FLT3 inhibition. Blood, 2020, 136, 2442-2456.	0.6	59
25	Mutant FOXL2C134W Hijacks SMAD4 and SMAD2/3 to Drive Adult Granulosa Cell Tumors. Cancer Research, 2020, 80, 3466-3479.	0.4	29
26	ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nature Genetics, 2020, 52, 198-207.	9.4	140
27	L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nature Cancer, 2020, 1, 28-45.	5.7	137
28	Cohesin Members Stag1 and Stag2 Display Distinct Roles in Chromatin Accessibility and Topological Control of HSC Self-Renewal and Differentiation. Cell Stem Cell, 2019, 25, 682-696.e8.	5.2	106
29	α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature, 2019, 573, 595-599.	13.7	187
30	2-hydroxyglutarate inhibits MyoD-mediated differentiation by preventing H3K9 demethylation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12851-12856.	3.3	28
31	A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1. Cancer Discovery, 2019, 9, 962-979.	7.7	58
32	Genome-scale screens identify JNK–JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nature Genetics, 2019, 51, 999-1010.	9.4	90
33	PI3K Inhibition Activates SGK1 via a Feedback Loop to Promote Chromatin-Based Regulation of ER-Dependent Gene Expression. Cell Reports, 2019, 27, 294-306.e5.	2.9	49
34	Leukemia Cell of Origin Influences p53 Activity and Therapeutic Sensitivity Via an Evi1-Dependent Mechanism. Blood, 2019, 134, 109-109.	0.6	0
35	Combined Targeting of the Menin-MLL1 Chromatin Complex and FLT3 As a Novel Therapeutic Concept Against NPM1 Mutant or MLL-Rearranged AML with Mutated FLT3. Blood, 2019, 134, 1441-1441.	0.6	18
36	A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell, 2018, 172, 1007-1021.e17.	13.5	97

#	Article	IF	Citations
37	Pluripotency transcription factors and Tet1/2 maintain Brd4-independent stem cell identity. Nature Cell Biology, 2018, 20, 565-574.	4.6	49
38	LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML. Blood, 2018, 131, 1730-1742.	0.6	92
39	MEF2C Phosphorylation Is Required forÂChemotherapy Resistance in Acute Myeloid Leukemia. Cancer Discovery, 2018, 8, 478-497.	7.7	59
40	Peptidomimetic blockade of MYB in acute myeloid leukemia. Nature Communications, 2018, 9, 110.	5.8	68
41	FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor. Cancer Discovery, 2018, 8, 234-251.	7.7	49
42	Inhibition of MEK and ATR is effective in a B-cell acute lymphoblastic leukemia model driven by Mll-Af4 and activated Ras. Blood Advances, 2018, 2, 2478-2490.	2.5	12
43	Arid1a restrains Kras-dependent changes in acinar cell identity. ELife, 2018, 7, .	2.8	39
44	DICER1 Is Essential for Self-Renewal of Human Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 616-625.	2.3	24
45	Targeting the CALR interactome in myeloproliferative neoplasms. JCI Insight, 2018, 3, .	2.3	49
46	AML with Mutations in IDH1 and DNMT3A Exhibits a Distinct Epigenetic Signature with Poorer Overall Survival. Blood, 2018, 132, 1471-1471.	0.6	2
47	Functional Profiling of Patient AML Stem Cells Reveals Mechanisms of Epigenetic Plasticity Controlling Therapy Resistance. Blood, 2018, 132, 1318-1318.	0.6	6
48	The Lysine Histone Methyltransferase SETD2 Is Required for Appropriate Immunoglobulin VDJ Recombination. Blood, 2018, 132, 511-511.	0.6	0
49	PGBD5 promotes site-specific oncogenic mutations in human tumors. Nature Genetics, 2017, 49, 1005-1014.	9.4	69
50	ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia. Nature Communications, 2017, 8, 15429.	5.8	55
51	SETD2 alterations impair DNA damage recognition and lead to resistance to chemotherapy in leukemia. Blood, 2017, 130, 2631-2641.	0.6	102
52	A UTX-MLL4-p300 Transcriptional Regulatory Network Coordinately Shapes Active Enhancer Landscapes for Eliciting Transcription. Molecular Cell, 2017, 67, 308-321.e6.	4.5	172
53	Forward genetic screen of human transposase genomic rearrangements. BMC Genomics, 2016, 17, 548.	1.2	13
54	Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in <i>NPM1</i> Mutant Leukemia. Cancer Discovery, 2016, 6, 1166-1181.	7.7	171

#	Article	IF	CITATIONS
55	NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis. Cancer Cell, 2016, 30, 863-878.	7.7	111
56	DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nature Medicine, 2016, 22, 1488-1495.	15.2	195
57	Reply to "Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status". Nature Medicine, 2016, 22, 578-579.	15.2	7
58	Targeting MYCN-Driven Transcription By BET-Bromodomain Inhibition. Clinical Cancer Research, 2016, 22, 2470-2481.	3.2	147
59	MLL-AF9– and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. Journal of Clinical Investigation, 2016, 126, 997-1011.	3.9	69
60	Loss of Lysine Histone Methyltransferase Setd2 Disrupts Normal Hematopoiesis, Lineage Commitment and Reveals a Novel Role for H3K36me3 in Immunoglobulin VDJ Recombination. Blood, 2016, 128, 423-423.	0.6	1
61	Non-Catalytic Role of SETD1A Regulates DNA Repair in Leukemia. Blood, 2016, 128, 434-434.	0.6	1
62	An Epigenetic Regulator Screen Identifies Novel Targets That Sensitize MLL-Rearranged Leukemia to DOT1L Inhibition. Blood, 2016, 128, 571-571.	0.6	0
63	Aberrant Phosphorylation of MEF2C Is Dispensable for Hematopoiesis, and Induces Chemotherapy Resistance and Susceptibility to MARK Kinase Inhibition Therapy in Acute Myeloid Leukemia. Blood, 2016, 128, 436-436.	0.6	0
64	Inhibition of MEK and DDR Pathways Induces Synergistic Killing of Novel Mll-Af4 B-ALL Model Harboring Activated Ras Mutations. Blood, 2016, 128, 1511-1511.	0.6	0
65	MLL partial tandem duplication leukemia cells are sensitive to small molecule DOT1L inhibition. Haematologica, 2015, 100, e190-e193.	1.7	45
66	DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nature Medicine, 2015, 21, 335-343.	15.2	200
67	Hematopoietic Differentiation Is Required for Initiation of Acute Myeloid Leukemia. Cell Stem Cell, 2015, 17, 611-623.	5.2	97
68	Loss of BAP1 function leads to EZH2-dependent transformation. Nature Medicine, 2015, 21, 1344-1349.	15.2	297
69	A Phase 1 Study of the DOT1L Inhibitor, Pinometostat (EPZ-5676), in Adults with Relapsed or Refractory Leukemia: Safety, Clinical Activity, Exposure and Target Inhibition. Blood, 2015, 126, 2547-2547.	0.6	42
70	Preliminary Report of the Phase 1 Study of the DOT1L Inhibitor, Pinometostat, EPZ-5676, in Children with Relapsed or Refractory MLL-r Acute Leukemia: Safety, Exposure and Target Inhibition. Blood, 2015, 126, 3792-3792.	0.6	11
71	BAP1 Loss Results in EZH2-Dependent Transformation in Myelodysplastic Syndromes. Blood, 2015, 126, 713-713.	0.6	0
72	AF10 Regulates Progressive H3K79 Methylation and HOX Gene Expression in Diverse AML Subtypes. Cancer Cell, 2014, 26, 896-908.	7.7	153

#	Article	lF	CITATIONS
73	Genomic Dark Matter Sheds Light on EVI1-Driven Leukemia. Cancer Cell, 2014, 25, 407-408.	7.7	4
74	Regulation of HOX gene expression by AF10-mediated conversion of H3K79me1 to H3K79me2. Experimental Hematology, 2014, 42, S30.	0.2	0
75	Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. Journal of Experimental Medicine, 2013, 210, 2641-2659.	4.2	278
76	Genome-Wide RNAi Screen Identifies The Mechanistic Role For DOT1L In MLL-Rearranged Leukemia. Blood, 2013, 122, 598-598.	0.6	4
77	ASXL1 Mutations Promote Myeloid Transformation through Loss of PRC2-Mediated Gene Repression. Cancer Cell, 2012, 22, 180-193.	7.7	504
78	H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions. Genome Biology, 2012, 13, R85.	13.9	166
79	Conditional Deletion of Asxl1 Results in Myelodysplasia. Blood, 2012, 120, 308-308.	0.6	0
80	Reprogramming Factor Expression Initiates Widespread Targeted Chromatin Remodeling. Cell Stem Cell, 2011, 8, 96-105.	5.2	345
81	GC-Rich Sequence Elements Recruit PRC2 in Mammalian ES Cells. PLoS Genetics, 2010, 6, e1001244.	1.5	368
82	Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains. PLoS Genetics, 2008, 4, e1000242.	1.5	878
83	Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448, 553-560.	13.7	3,733
84	The MicrobesOnline Web site for comparative genomics. Genome Research, 2005, 15, 1015-1022.	2.4	176
85	Purification and Sequencing of Large Circular DNA from Human Cells. Protocol Exchange, 0, , .	0.3	6