Alex Odermatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5659842/publications.pdf

Version: 2024-02-01

44444 58552 9,028 190 50 86 citations h-index g-index papers 196 196 196 10709 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Systematic evidence on migrating and extractable food contact chemicals: Most chemicals detected in food contact materials are not listed for use. Critical Reviews in Food Science and Nutrition, 2023, 63, 9425-9435.	5.4	28
2	JAK and mTOR inhibitors prevent cytokine release while retaining T cell bispecific antibody in vivo efficacy., 2022, 10, e003766.		15
3	Albendazole reduces hepatic inflammation and endoplasmic reticulum-stress in a mouse model of chronic Echinococcus multilocularis infection. PLoS Neglected Tropical Diseases, 2022, 16, e0009192.	1.3	6
4	Dissecting the mechanism of cytokine release induced by T-cell engagers highlights the contribution of neutrophils. Oncolmmunology, 2022, 11, 2039432.	2.1	14
5	AKR1D1 knockout mice develop a sex-dependent metabolic phenotype. Journal of Endocrinology, 2022, 253, 97-113.	1.2	7
6	Activation of retinoic acid-related orphan receptor $\hat{l}^3(t)$ by parabens and benzophenone UV-filters. Toxicology, 2022, 471, 153159.	2.0	5
7	The Potential Tumor-Suppressor DHRS7 Inversely Correlates with EGFR Expression in Prostate Cancer Cells and Tumor Samples. Cancers, 2022, 14, 3074.	1.7	2
8	Evaluating the food safety and risk assessment evidence-base of polyethylene terephthalate oligomers: Protocol for a systematic evidence map. Environment International, 2022, 167, 107387.	4.8	14
9	Loss of Claudin-3 Impairs Hepatic Metabolism, Biliary Barrier Function, and Cell Proliferation in the Murine Liver. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 745-767.	2.3	5
10	Monitoring Changes in the Oxidizing Milieu in the Endoplasmic Reticulum of Mammalian Cells Using HyPerER. Bio-protocol, 2021, 11, e4076.	0.2	0
11	The ratio of ursodeoxycholyltaurine to 7â€oxolithocholyltaurine serves as a biomarker of decreased 11βâ€hydroxysteroid dehydrogenase 1 activity in mouse. British Journal of Pharmacology, 2021, 178, 3309-3326.	2.7	5
12	Species-specific differences in the inhibition of $11\hat{l}^2$ -hydroxysteroid dehydrogenase 2 by itraconazole and posaconazole. Toxicology and Applied Pharmacology, 2021, 412, 115387.	1.3	11
13	Antifungal therapy with azoles and the syndrome of acquired mineralocorticoid excess. Molecular and Cellular Endocrinology, 2021, 524, 111168.	1.6	10
14	Carbonyl reductase 1 amplifies glucocorticoid action in adipose tissue and impairs glucose tolerance in lean mice. Molecular Metabolism, 2021, 48, 101225.	3.0	4
15	Src/lck inhibitor dasatinib reversibly switches off cytokine release and T cell cytotoxicity following stimulation with T cell bispecific antibodies. , 2021, 9, e002582.		14
16	Impact on Bile Acid Concentrations by Alveolar Echinococcosis and Treatment with Albendazole in Mice. Metabolites, 2021, 11, 442.	1.3	0
17	Evaluation of two inÂvitro assays for tumorigenicity assessment of CRISPR-Cas9 genome-edited cells. Molecular Therapy - Methods and Clinical Development, 2021, 23, 241-253.	1.8	5
18	Modulation of $11\hat{l}^2$ -hydroxysteroid dehydrogenase functions by the cloud of endogenous metabolites in a local microenvironment: The glycyrrhetinic acid-like factor (GALF) hypothesis. Journal of Steroid Biochemistry and Molecular Biology, 2021, 214, 105988.	1.2	5

#	Article	IF	CITATIONS
19	Salt-Sensitive Hypertension in GR+/â^' Rats Is Accompanied with Dysregulation in Adrenal Soluble Epoxide Hydrolase and Polyunsaturated Fatty Acid Pathways. International Journal of Molecular Sciences, 2021, 22, 13218.	1.8	4
20	Drug-induced endocrine blood pressure elevation. Pharmacological Research, 2020, 154, 104311.	3.1	18
21	Posaconazole Serum Drug Levels Associated With Pseudohyperaldosteronism. Clinical Infectious Diseases, 2020, 70, 2593-2598.	2.9	68
22	Impact of $17\hat{1}^2$ -HSD12, the 3-ketoacyl-CoA reductase of long-chain fatty acid synthesis, on breast cancer cell proliferation and migration. Cellular and Molecular Life Sciences, 2020, 77, 1153-1175.	2.4	7
23	Reply to DiPippo and Kontoyiannis. Clinical Infectious Diseases, 2020, 71, 469-469.	2.9	0
24	The Antioxidative Role of Cytoglobin in Podocytes: Implications for a Role in Chronic Kidney Disease. Antioxidants and Redox Signaling, 2020, 32, 1155-1171.	2.5	23
25	Profiling of anabolic androgenic steroids and selective androgen receptor modulators for interference with adrenal steroidogenesis. Biochemical Pharmacology, 2020, 172, 113781.	2.0	10
26	Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. International Journal of Molecular Sciences, 2020, 21, 7102.	1.8	10
27	Development and Validation of a Highly Sensitive LC-MS/MS Method for the Analysis of Bile Acids in Serum, Plasma, and Liver Tissue Samples. Metabolites, 2020, 10, 282.	1.3	28
28	Management of posaconazole-induced pseudohyperaldosteronism. Journal of Antimicrobial Chemotherapy, 2020, 75, 3688-3693.	1.3	13
29	Gynecomastia and hypertension in a patient treated with posaconazole. Clinical Case Reports (discontinued), 2020, 8, 3158-3161.	0.2	6
30	Protein phosphatase 1 alpha enhances glucocorticoid receptor activity by a mechanism involving phosphorylation of serine-211. Molecular and Cellular Endocrinology, 2020, 518, 110873.	1.6	5
31	Ca2+ mobilization-dependent reduction of the endoplasmic reticulum lumen is due to influx of cytosolic glutathione. BMC Biology, 2020, 18, 19.	1.7	14
32	Inhibition of IL-1beta improves Glycaemia in a Mouse Model for Gestational Diabetes. Scientific Reports, 2020, 10, 3035.	1.6	17
33	Tributyltin and triphenyltin induce $11\hat{l}^2$ -hydroxysteroid dehydrogenase 2 expression and activity through activation of retinoid X receptor \hat{l}_\pm . Toxicology Letters, 2020, 322, 39-49.	0.4	9
34	Molecular mechanisms of posaconazole- and itraconazole-induced pseudohyperaldosteronism and assessment of other systemically used azole antifungals. Journal of Steroid Biochemistry and Molecular Biology, 2020, 199, 105605.	1.2	31
35	Subcellular localization and membrane topology of $17\hat{l}^2$ -hydroxysteroid dehydrogenases. Molecular and Cellular Endocrinology, 2019, 489, 98-106.	1.6	17
36	$11\hat{l}^2$ -Hydroxysteroid dehydrogenases control access of $7\hat{l}^2$,27-dihydroxycholesterol to retinoid-related orphan receptor \hat{l}^3 . Journal of Lipid Research, 2019, 60, 1535-1546.	2.0	23

#	Article	IF	CITATIONS
37	Posaconazole-Induced Hypertension Due to Inhibition of $11\hat{1}^2$ -Hydroxylase and $11\hat{1}^2$ -Hydroxysteroid Dehydrogenase 2. Journal of the Endocrine Society, 2019, 3, 1361-1366.	0.1	27
38	Treatment of Primary Aldosteronism With mTORC1 Inhibitors. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4703-4714.	1.8	7
39	Lack of Renal Tubular Glucocorticoid Receptor Decreases the Thiazide-Sensitive Na+/Cl– Cotransporter NCC and Transiently Affects Sodium Handling. Frontiers in Physiology, 2019, 10, 989.	1.3	8
40	In vitro models to study insulin and glucocorticoids modulation of trimethyltin (TMT)-induced neuroinflammation and neurodegeneration, and in vivo validation in db/db mice. Archives of Toxicology, 2019, 93, 1649-1664.	1.9	11
41	Identification of the fungicide epoxiconazole by virtual screening and biological assessment as inhibitor of human $11^{\hat{1}^2}$ -hydroxylase and aldosterone synthase. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105358.	1.2	11
42	Enzymatic interconversion of the oxysterols $7\hat{l}^2$,25-dihydroxycholesterol and 7-keto,25-hydroxycholesterol by $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 and 2. Journal of Steroid Biochemistry and Molecular Biology, 2019, 190, 19-28.	1.2	23
43	Profiling withanolide A for therapeutic targets in neurodegenerative diseases. Bioorganic and Medicinal Chemistry, 2019, 27, 2508-2520.	1.4	11
44	The Binding of Human IgG to Minipig Fcl³Rs – Implications for Preclinical Assessment of Therapeutic Antibodies. Pharmaceutical Research, 2019, 36, 47.	1.7	14
45	Deletion of the serine protease CAP2/Tmprss4 leads to dysregulated renal water handling upon dietary potassium depletion. Scientific Reports, 2019, 9, 19540.	1.6	11
46	The genomic organization and expression pattern of the low-affinity Fc gamma receptors (Fc \hat{I}^3R) in the GA¶ttingen minipig. Immunogenetics, 2019, 71, 123-136.	1.2	6
47	Removal of batch effects using stratified subsampling of metabolomic data for in vitro endocrine disruptors screening. Talanta, 2019, 195, 77-86.	2.9	10
48	Effects of lisdexamfetamine on plasma steroid concentrations compared with d-amphetamine in healthy subjects: A randomized, double-blind, placebo-controlled study. Journal of Steroid Biochemistry and Molecular Biology, 2019, 186, 212-225.	1.2	14
49	Acute effects of lisdexamfetamine and D-amphetamine on social cognition and cognitive performance in a placebo-controlled study in healthy subjects. Psychopharmacology, 2018, 235, 1389-1402.	1.5	22
50	NRF2 regulates the glutamine transporter Slc38a3 (SNAT3) in kidney in response to metabolic acidosis. Scientific Reports, 2018, 8, 5629.	1.6	20
51	Currently available murine Leydig cell lines can be applied to study early steps of steroidogenesis but not testosterone synthesis. Heliyon, 2018, 4, e00527.	1.4	23
52	Hexoseâ€6â€phosphate dehydrogenase controls cancer cell proliferation and migration through pleiotropic effects on the unfoldedâ€protein response, calcium homeostasis, and redox balance. FASEB Journal, 2018, 32, 2690-2705.	0.2	25
53	Design, synthesis, and biological evaluation of novel selective peptide inhibitors of $11\hat{l}^2$ -hydroxysteroid dehydrogenase 1. Bioorganic and Medicinal Chemistry, 2018, 26, 5128-5139.	1.4	4
54	Absence of hexoseâ€6â€phosphate dehydrogenase results in reduced overall glucose consumption but does not prevent 11î²â€hydroxysteroid dehydrogenaseâ€1â€dependent glucocorticoid activation. FEBS Journal, 2018, 285, 3993-4004.	2.2	5

#	Article	IF	CITATIONS
55	Accelerated skin wound healing by selective $11\hat{l}^2$ -Hydroxylase (CYP11B1) inhibitors. European Journal of Medicinal Chemistry, 2018, 143, 591-597.	2.6	10
56	Aldosterone deficiency in mice burdens respiration and accentuates diet-induced hyperinsulinemia and obesity. JCI Insight, 2018, 3, .	2.3	10
57	Novel cases of Tunisian patients with mutations in the gene encoding 17β-hydroxysteroid dehydrogenase type 3 and a founder effect. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 86-94.	1.2	11
58	Inhibition of $11\hat{l}^2$ -hydroxysteroid dehydrogenase 2 by the fungicides itraconazole and posaconazole. Biochemical Pharmacology, 2017, 130, 93-103.	2.0	48
59	Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids. Toxicology, 2017, 381, 51-63.	2.0	42
60	Virtual screening applications in short-chain dehydrogenase/reductase research. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 157-177.	1.2	24
61	Phenylbenzenesulfonates and -sulfonamides as 17β-hydroxysteroid dehydrogenase type 2 inhibitors: Synthesis and SAR-analysis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2982-2985.	1.0	4
62	DHRS7 (SDR34C1) $\hat{a}\in$ A new player in the regulation of androgen receptor function by inactivation of 51±-dihydrotestosterone?. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 288-295.	1.2	7
63	Enhanced metabolite annotation via dynamic retention time prediction: Steroidogenesis alterations as a case study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1071, 11-18.	1.2	25
64	Involvement Of Vascular Aldosterone Synthase In Phosphate-Induced Osteogenic Transformation Of Vascular Smooth Muscle Cells. Scientific Reports, 2017, 7, 2059.	1.6	53
65	Potential Antiosteoporotic Natural Product Lead Compounds That Inhibit 17β-Hydroxysteroid Dehydrogenase Type 2. Journal of Natural Products, 2017, 80, 965-974.	1.5	13
66	Absence of 11-keto reduction of cortisone and 11-ketotestosterone in the model organism zebrafish. Journal of Endocrinology, 2017, 232, 323-335.	1.2	22
67	Hydrogen sulfide attenuates calcification of vascular smooth muscle cells via KEAP1/NRF2/NQO1 activation. Atherosclerosis, 2017, 265, 78-86.	0.4	83
68	Carbonyl reductase 1 catalyzes $20\hat{i}^2$ -reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity. Scientific Reports, 2017, 7, 10633.	1.6	15
69	The intestinal phosphate transporter NaPi-IIb (Slc34a2) is required to protect bone during dietary phosphate restriction. Scientific Reports, 2017, 7, 11018.	1.6	30
70	IGF-1 prevents simvastatin-induced myotoxicity in C2C12 myotubes. Archives of Toxicology, 2017, 91, 2223-2234.	1.9	23
71	$11\hat{l}^2$ -HSD2 SUMOylation Modulates Cortisol-Induced Mineralocorticoid Receptor Nuclear Translocation Independently of Effects on Transactivation. Endocrinology, 2017, 158, 4047-4063.	1.4	14
72	Interference of Paraben Compounds with Estrogen Metabolism by Inhibition of $17\hat{l}^2$ -Hydroxysteroid Dehydrogenases. International Journal of Molecular Sciences, 2017, 18, 2007.	1.8	45

#	Article	IF	CITATIONS
73	Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome. Nutrients, 2017, 9, 426.	1.7	33
74	Pharmacokinetics and Pharmacodynamics of Lisdexamfetamine Compared with D-Amphetamine in Healthy Subjects. Frontiers in Pharmacology, 2017, 8, 617.	1.6	35
75	Biochemical Analysis of Four Missense Mutations in the <i>HSD17B3</i> Gene Associated with 46, XY Disorders of Sex Development in Egyptian Patients. Journal of Sexual Medicine, 2017, 14, 1165-1174.	0.3	9
76	Novel $11\hat{1}^2$ -hydroxysteroid dehydrogenase 1 inhibitors reduce cortisol levels in keratinocytes and improve dermal collagen content in human ex vivo skin after exposure to cortisone and UV. PLoS ONE, 2017, 12, e0171079.	1.1	13
77	Acute Effects of Lysergic Acid Diethylamide on Circulating Steroid Levels in Healthy Subjects. Journal of Neuroendocrinology, 2016, 28, 12374.	1.2	60
78	Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. Journal of Steroid Biochemistry and Molecular Biology, 2016, 158, 9-21.	1.2	32
79	Evaluation of tetrabromobisphenol A effects on human glucocorticoid and androgen receptors: A comparison of results from human- with yeast-based in vitro assays. Toxicology, 2016, 370, 70-77.	2.0	15
80	Development and characterization of a pseudo multiple reaction monitoring method for the quantification of human uromodulin in urine. Bioanalysis, 2016, 8, 1279-1296.	0.6	14
81	Adult nephron-specific MR-deficient mice develop a severe renal PHA-1 phenotype. Pflugers Archiv European Journal of Physiology, 2016, 468, 895-908.	1.3	33
82	Role of Pro-637 and Gln-642 in human glucocorticoid receptors and Ser-843 and Leu-848 in mineralocorticoid receptors in their differential responses to cortisol and aldosterone. Journal of Steroid Biochemistry and Molecular Biology, 2016, 159, 31-40.	1.2	19
83	Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α. Atherosclerosis, 2016, 251, 404-414.	0.4	188
84	Recommendations for description and validation of antibodies for research use. Journal of Steroid Biochemistry and Molecular Biology, 2016, 156, 40-42.	1.2	12
85	Biochemical analyses and molecular modeling explain the functional loss of 17β-hydroxysteroid dehydrogenase 3 mutant G133R in three Tunisian patients with 46, XY Disorders of Sex Development. Journal of Steroid Biochemistry and Molecular Biology, 2016, 155, 147-154.	1.2	14
86	Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules, 2015, 20, 22799-22832.	1.7	131
87	A role for the dehydrogenase DHRS7 (SDR34C1) in prostate cancer. Cancer Medicine, 2015, 4, 1717-1729.	1.3	15
88	Rab-GAP TBC1D4 (AS160) is dispensable for the renal control of sodium and water homeostasis but regulates GLUT4 in mouse kidney. American Journal of Physiology - Renal Physiology, 2015, 309, F779-F790.	1.3	6
89	Pistacia lentiscus Oleoresin: Virtual Screening and Identification of Masticadienonic and Isomasticadienonic Acids as Inhibitors of $11^{\hat{1}^2}$ -Hydroxysteroid Dehydrogenase 1. Planta Medica, 2015, 81, 525-532.	0.7	22
90	Steroidomic Footprinting Based on Ultra-High Performance Liquid Chromatography Coupled with Qualitative and Quantitative High-Resolution Mass Spectrometry for the Evaluation of Endocrine Disrupting Chemicals in H295R Cells. Chemical Research in Toxicology, 2015, 28, 955-966.	1.7	24

#	Article	IF	Citations
91	Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1672-1682.	1.9	18
92	Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney. Kidney International, 2015, 88, 1261-1273.	2.6	41
93	Reprint of "In silico methods in the discovery of endocrine disrupting chemicals― Journal of Steroid Biochemistry and Molecular Biology, 2015, 153, 93-101.	1.2	8
94	$11\hat{l}^2$ -Hydroxysteroid dehydrogenase 1: Regeneration of active glucocorticoids is only part of the story. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 85-92.	1.2	42
95	Pharmacophore Model Refinement for 11βâ€Hydroxysteroid Dehydrogenase Inhibitors: Search for Modulators of Intracellular Glucocorticoid Concentrations. Molecular Informatics, 2014, 33, 15-25.	1.4	35
96	Chemical Tuning Enhances Both Potency Toward Nrf2 and In Vitro Therapeutic Index of Triterpenoids. Toxicological Sciences, 2014, 140, 462-469.	1.4	21
97	Inhibition of metabotropic glutamate receptor 5 induces cellular stress through pertussis toxin-sensitive Gi-proteins in murine BV-2 microglia cells. Journal of Neuroinflammation, 2014, 11, 190.	3.1	24
98	Accumulation and effects of the UV-filter octocrylene in adult and embryonic zebrafish (Danio rerio). Science of the Total Environment, 2014, 476-477, 207-217.	3.9	91
99	Hepatocellular toxicity of benzbromarone: Effects on mitochondrial function and structure. Toxicology, 2014, 324, 136-146.	2.0	55
100	Ligand-Based Pharmacophore Modeling and Virtual Screening for the Discovery of Novel 1712-Hydroxysteroid Dehydrogenase 2 Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 5995-6007.	2.9	57
101	Dibutyltin promotes oxidative stress and increases inflammatory mediators in BV-2 microglia cells. Toxicology Letters, 2014, 230, 177-187.	0.4	32
102	$11\hat{i}^2$ -Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice. Molecular Metabolism, 2014, 3, 554-564.	3.0	11
103	Fructose promotes the differentiation of 3T3‣1 adipocytes and accelerates lipid metabolism. FEBS Letters, 2014, 588, 490-496.	1.3	29
104	Acute Effects of 3,4-Methylenedioxymethamphetamine and Methylphenidate on Circulating Steroid Levels in Healthy Subjects. Neuroendocrinology, 2014, 100, 17-25.	1.2	49
105	Synthesis and biological analysis of benzazol-2-yl piperazine sulfonamides as $11\hat{l}^2$ -hydroxysteroid dehydrogenase 1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5397-5400.	1.0	11
106	In silico methods in the discovery of endocrine disrupting chemicals. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 18-26.	1.2	51
107	Synthesis of sterically encumbered $11\hat{l}^2$ -aminoprogesterone derivatives and evaluation as $11\hat{l}^2$ -hydroxysteroid dehydrogenase inhibitors and mineralocorticoid receptor antagonists. Bioorganic and Medicinal Chemistry, 2013, 21, 6274-6281.	1.4	4
108	Quantification of multiple bile acids in uninephrectomized rats using ultra-performance liquid chromatography-tandem mass spectrometry. Analytical Methods, 2013, 5, 1155.	1,3	13

#	Article	IF	Citations
109	Structural Optimization of 2,5-Thiophene Amides as Highly Potent and Selective $17\hat{1}^2$ -Hydroxysteroid Dehydrogenase Type 2 Inhibitors for the Treatment of Osteoporosis. Journal of Medicinal Chemistry, 2013, 56, 167-181.	2.9	22
110	Prevalence of cam and pincer-type deformities on hip MRI in an asymptomatic young Swiss female population: a cross-sectional study. Osteoarthritis and Cartilage, 2013, 21, 544-550.	0.6	74
111	Carbonyl reduction of triadimefon by human and rodent $11\hat{l}^2$ -hydroxysteroid dehydrogenase 1. Biochemical Pharmacology, 2013, 85, 1370-1378.	2.0	13
112	Endoplasmic reticulum: Reduced and oxidized glutathione revisited. Journal of Cell Science, 2013, 126, 1604-17.	1.2	131
113	Cysteine-10 on $17 < i > \hat{l}^2 < i>$ -Hydroxysteroid Dehydrogenase 1 Has Stabilizing Interactions in the Cofactor Binding Region and Renders Sensitivity to Sulfhydryl Modifying Chemicals. International Journal of Cell Biology, 2013, 2013, 1-8.	1.0	2
114	The Microsomal Enzyme $17\hat{l}^2$ -Hydroxysteroid Dehydrogenase 3 Faces the Cytoplasm and Uses NADPH Generated by Glucose-6-Phosphate Dehydrogenase. Endocrinology, 2013, 154, 205-213.	1.4	20
115	Formation of Threohydrobupropion from Bupropion Is Dependent on $11 < i > \hat{l}^2 < i> Hydroxysteroid Dehydrogenase 1. Drug Metabolism and Disposition, 2013, 41, 1671-1678.$	1.7	25
116	Impaired oxidoreduction by $11\hat{l}^2$ -hydroxysteroid dehydrogenase 1 results in the accumulation of 7-oxolithocholic acid. Journal of Lipid Research, 2013, 54, 2874-2883.	2.0	13
117	Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney International, 2013, 83, 811-824.	2.6	293
118	Green fluorescent protein-based monitoring of endoplasmic reticulum redox poise. Frontiers in Genetics, 2013, 4, 108.	1.1	35
119	The Anabolic Androgenic Steroid Fluoxymesterone Inhibits 11Â-Hydroxysteroid Dehydrogenase 2-Dependent Glucocorticoid Inactivation. Toxicological Sciences, 2012, 126, 353-361.	1.4	20
120	Species-specific differences in the inhibition of human and zebrafish $11\hat{l}^2$ -hydroxysteroid dehydrogenase 2 by thiram and organotins. Toxicology, 2012, 301, 72-78.	2.0	20
121	Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. Journal of Neuroinflammation, 2012, 9, 260.	3.1	110
122	Tissue-specific modulation of mineralocorticoid receptor function by $11\hat{l}^2$ -hydroxysteroid dehydrogenases: An overview. Molecular and Cellular Endocrinology, 2012, 350, 168-186.	1.6	134
123	Central Glucocorticoid Administration Promotes Weight Gain and Increased $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1 Expression in White Adipose Tissue. PLoS ONE, 2012, 7, e34002.	1.1	27
124	Suppression of the Nrf2-Dependent Antioxidant Response by Glucocorticoids and $11\hat{1}^2$ -HSD1-Mediated Glucocorticoid Activation in Hepatic Cells. PLoS ONE, 2012, 7, e36774.	1.1	74
125	Virtual Screening as a Strategy for the Identification of Xenobiotics Disrupting Corticosteroid Action. PLoS ONE, 2012, 7, e46958.	1.1	26
126	Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 2. Journal of Steroid Biochemistry and Molecular Biology, 2011, 125, 129-142.	1.2	57

#	Article	IF	Citations
127	Identification of chemically diverse, novel inhibitors of 17β-hydroxysteroid dehydrogenase type 3 and 5 by pharmacophore-based virtual screening. Journal of Steroid Biochemistry and Molecular Biology, 2011, 125, 148-161.	1.2	33
128	Endocrine disrupting chemicals. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 1-3.	1.2	25
129	Synthesis of new glycyrrhetinic acid derived ring A azepanone, 29-urea and 29-hydroxamic acid derivatives as selective $11\hat{l}^2$ -hydroxysteroid dehydrogenase 2 inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 1866-1880.	1.4	23
130	Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by $11\hat{1}^2$ -hydroxysteroid dehydrogenase 1. Biochemical Journal, 2011, 436, 621-629.	1.7	45
131	The Western-style diet: a major risk factor for impaired kidney function and chronic kidney disease. American Journal of Physiology - Renal Physiology, 2011, 301, F919-F931.	1.3	188
132	Association between cam-type deformities and magnetic resonance imaging-detected structural hip damage: A cross-sectional study in young men. Arthritis and Rheumatism, 2011, 63, 4023-4030.	6.7	92
133	The UV-filter benzophenone-1 inhibits $17\hat{l}^2$ -hydroxysteroid dehydrogenase type 3: Virtual screening as a strategy to identify potential endocrine disrupting chemicals. Biochemical Pharmacology, 2010, 79, 1189-1199.	2.0	78
134	Prevalence of camâ€type deformity on hip magnetic resonance imaging in young males: A crossâ€sectional study. Arthritis Care and Research, 2010, 62, 1319-1327.	1.5	169
135	Synthesis of glycyrrhetinic acid derivatives for the treatment of metabolic diseases. Bioorganic and Medicinal Chemistry, 2010, 18, 433-454.	1.4	58
136	$11\hat{l}^2$ -Hydroxysteroid dehydrogenase 1 inhibiting constituents from Eriobotrya japonica revealed by bioactivity-guided isolation and computational approaches. Bioorganic and Medicinal Chemistry, 2010, 18, 1507-1515.	1.4	50
137	Synthesis of novel 3-amino and 29-hydroxamic acid derivatives of glycyrrhetinic acid as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 7522-7541.	1.4	16
138	Contribution of Fructose-6-Phosphate to Glucocorticoid Activation in the Endoplasmic Reticulum: Possible Implication in the Metabolic Syndrome. Endocrinology, 2010, 151, 4830-4839.	1.4	31
139	The glucocorticoid-activating enzyme $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 has broad substrate specificity: Physiological and toxicological considerations. Journal of Steroid Biochemistry and Molecular Biology, 2010, 119, 1-13.	1.2	39
140	Steroids: Modulators of inflammation and immunity. Journal of Steroid Biochemistry and Molecular Biology, 2010, 120, 67-68.	1.2	8
141	Diazepane \hat{a} e"acetamide derivatives as selective $11\hat{1}^2$ -hydroxysteroid dehydrogenase type 1 inhibitors. Expert Opinion on Therapeutic Patents, 2009, 19, 1477-1483.	2.4	1
142	Inhibition of $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 by plant extracts used as traditional antidiabetic medicines. Fìtoterapìâ, 2009, 80, 200-205.	1.1	32
143	Mineralocorticoid receptors: Emerging complexity and functional diversity. Steroids, 2009, 74, 163-171.	0.8	38
144	Selective inhibition of $11\hat{l}^2$ -hydroxysteroid dehydrogenase 1 by $18\hat{l}_{\pm}$ -glycyrrhetinic acid but not $18\hat{l}^2$ -glycyrrhetinic acid. Journal of Steroid Biochemistry and Molecular Biology, 2009, 113, 248-252.	1.2	45

#	Article	IF	Citations
145	$11\hat{l}^2$ -Hydroxysteroid dehydrogenase 1 reductase activity is dependent on a high ratio of NADPH/NADP+ and is stimulated by extracellular glucose. Molecular and Cellular Endocrinology, 2009, 301, 137-141.	1.6	53
146	Hexose-6-phosphate dehydrogenase modulates the effect of inhibitors and alternative substrates of $11\hat{l}^2$ -hydroxysteroid dehydrogenase 1. Molecular and Cellular Endocrinology, 2009, 301, 117-122.	1.6	26
147	Direct protein–protein interaction of 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase in the endoplasmic reticulum lumen. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1536-1543.	1.9	50
148	Glucocorticoid and mineralocorticoid action: Why should we consider influences by environmental chemicals?. Biochemical Pharmacology, 2008, 76, 1184-1193.	2.0	62
149	Discovery of Nonsteroidal 17î ² -Hydroxysteroid Dehydrogenase 1 Inhibitors by Pharmacophore-Based Screening of Virtual Compound Libraries. Journal of Medicinal Chemistry, 2008, 51, 4188-4199.	2.9	55
150	DHEA Induces $11\hat{1}^2$ -HSD2 by Acting on CCAAT/Enhancer-Binding Proteins. Journal of the American Society of Nephrology: JASN, 2008, 19, 92-101.	3.0	56
151	Dibutyltin Disrupts Glucocorticoid Receptor Function and Impairs Glucocorticoid-Induced Suppression of Cytokine Production. PLoS ONE, 2008, 3, e3545.	1.1	64
152	Impaired Protein Stability of $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 2: A Novel Mechanism of Apparent Mineralocorticoid Excess. Journal of the American Society of Nephrology: JASN, 2007, 18, 1262-1270.	3.0	42
153	Hexose-6-phosphate Dehydrogenase Modulates $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1-Dependent Metabolism of 7-keto- and $7\hat{l}^2$ -hydroxy-neurosteroids. PLoS ONE, 2007, 2, e561.	1.1	38
154	Readjusting the Glucocorticoid Balance: An Opportunity for Modulators of 11β -Hydroxysteroid Dehydrogenase Type 1 Activity?. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2007, 7, 125-140.	0.6	48
155	Coffee inhibits the reactivation of glucocorticoids by $11\hat{1}^2$ -hydroxysteroid dehydrogenase type 1: A glucocorticoid connection in the anti-diabetic action of coffee?. FEBS Letters, 2006, 580, 4081-4085.	1.3	36
156	Why is $11\hat{1}^2$ -hydroxysteroid dehydrogenase type 1 facing the endoplasmic reticulum lumen?. Molecular and Cellular Endocrinology, 2006, 248, 15-23.	1.6	68
157	Disruption of glucocorticoid action by environmental chemicals: Potential mechanisms and relevance. Journal of Steroid Biochemistry and Molecular Biology, 2006, 102, 222-231.	1.2	61
158	The Discovery of New $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1 Inhibitors by Common Feature Pharmacophore Modeling and Virtual Screening. Journal of Medicinal Chemistry, 2006, 49, 3454-3466.	2.9	114
159	Interaction of ICAM-1 with \hat{I}^2 2-integrin CD11c/CD18: Characterization of a peptide ligand that mimics a putative binding site on domain D4 of ICAM-1. European Journal of Immunology, 2005, 35, 3610-3621.	1.6	48
160	Organotins Disrupt the 11β-Hydroxysteroid Dehydrogenase Type 2–Dependent Local Inactivation of Glucocorticoids. Environmental Health Perspectives, 2005, 113, 1600-1606.	2.8	71
161	Dehydroepiandrosterone inhibits the amplification of glucocorticoid action in adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E957-E964.	1.8	79
162	Charting biologically relevant chemical space: A structural classification of natural products (SCONP). Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17272-17277.	3.3	534

#	Article	IF	Citations
163	Comparative enzymology of $11\hat{1}^2$ -hydroxysteroid dehydrogenase type 1 from six species. Journal of Molecular Endocrinology, 2005, 35, 89-101.	1.1	71
164	Rapid Hepatic Metabolism of 7-Ketocholesterol by $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1. Journal of Biological Chemistry, 2004, 279, 18415-18424.	1.6	116
165	Compound library development guided by protein structure similarity clustering and natural product structure. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16721-16726.	3.3	198
166	Appropriate Function of $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 1 in the Endoplasmic Reticulum Lumen Is Dependent on Its N-terminal Region Sharing Similar Topological Determinants with 50-kDa Esterase. Journal of Biological Chemistry, 2004, 279, 31131-31138.	1.6	46
167	Hexose-6-phosphate dehydrogenase determines the reaction direction of $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 as an oxoreductase. FEBS Letters, 2004, 571, 129-133.	1.3	194
168	The 11-ketosteroid 11-ketodexamethasone is a glucocorticoid receptor agonist. Molecular and Cellular Endocrinology, 2004, 214, 27-37.	1.6	51
169	Glucocorticoid-mediated mineralocorticoid receptor activation and hypertension. Current Opinion in Nephrology and Hypertension, 2004, 13, 451-458.	1.0	121
170	Corticosteroid-dependent hypertension: environmental influences. Swiss Medical Weekly, 2004, 134, 4-13.	0.8	10
171	A rapid screening assay for inhibitors of $11\hat{l}^2$ -hydroxysteroid dehydrogenases ($11\hat{l}^2$ -HSD): flavanone selectively inhibits $11\hat{l}^2$ -HSD1 reductase activity. Molecular and Cellular Endocrinology, 2003, 212, 41-49.	1.6	100
172	Inhibition of $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 2 by dithiocarbamates. Biochemical and Biophysical Research Communications, 2003, 308, 257-262.	1.0	88
173	Glutamate-115 renders specificity of human $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 2 for the cofactor NAD+. Molecular and Cellular Endocrinology, 2003, 201, 177-187.	1.6	29
174	Chenodeoxycholic Acid and Deoxycholic Acid Inhibit $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 2 and Cause Cortisol-induced Transcriptional Activation of the Mineralocorticoid Receptor. Journal of Biological Chemistry, 2002, 277, 26286-26292.	1.6	43
175	The Intracellular Localization of the Mineralocorticoid Receptor Is Regulated by $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 2. Journal of Biological Chemistry, 2001, 276, 28484-28492.	1.6	120
176	A Mutation in the Cofactor-Binding Domain of $11\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 2 Associated with Mineralocorticoid Hypertension ¹ . Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1247-1252.	1.8	44
177	Reduced activity of $11\hat{1}^2$ -hydroxysteroid dehydrogenase in patients with cholestasis. Journal of Clinical Investigation, 2001, 108, 1299-1305.	3.9	55
178	Identification of Receptor Ligands by Screening Phage-Display Peptide Libraries Ex Vivo on Microdissected Kidney Tubules. Journal of the American Society of Nephrology: JASN, 2001, 12, 308-316.	3.0	32
179	The mutation of Pro789 to Leu reduces the activity of the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) and is associated with Brody disease. Human Genetics, 2000, 106, 482-491.	1.8	71
180	The N-terminal Anchor Sequences of $11\hat{l}^2$ -Hydroxysteroid Dehydrogenases Determine Their Orientation in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 1999, 274, 28762-28770.	1.6	171

#	Article	IF	CITATIONS
181	Sarcolipin Regulates the Activity of SERCA1, the Fast-twitch Skeletal Muscle Sarcoplasmic Reticulum Ca2+-ATPase. Journal of Biological Chemistry, 1998, 273, 12360-12369.	1.6	206
182	Characterization of the Gene Encoding Human Sarcolipin (SLN), a Proteolipid Associated with SERCA1: Absence of Structural Mutations in Five Patients with Brody Disease. Genomics, 1997, 45, 541-553.	1.3	159
183	Structure/Function Analysis of the Ca2+Binding and Translocation Domain of SERCA1 and the Role in Brody Disease of the ATP2A1 Gene Encoding SERCA1. Annals of the New York Academy of Sciences, 1997, 834, 175-185.	1.8	21
184	Mutations in the gene–encoding SERCA1, the fast–twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nature Genetics, 1996, 14, 191-194.	9.4	223
185	The max of the Ca2+-ATPase of Cardiac Sarcoplasmic Reticulum (SERCA2a) Is Not Altered by Ca2+/Calmodulin-dependent Phosphorylation or by Interaction with Phospholamban. Journal of Biological Chemistry, 1996, 271, 14206-14213.	1.6	116
186	Two trans-Acting Metalloregulatory Proteins Controlling Expression of the Copper-ATPases of Enterococcus hirae*. Journal of Biological Chemistry, 1995, 270, 4349-4354.	1.6	163
187	Copper and Silver Transport by CopB-ATPase in Membrane Vesicles of Enterococcus hirae. Journal of Biological Chemistry, 1995, 270, 9217-9221.	1.6	246
188	Copper pumping ATPases: Common concepts in bacteria and man. FEBS Letters, 1994, 346, 44-47.	1.3	103
189	Induction of the Putative Copper ATPases, CopA and Copb, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ Extrusion by CopB. Biochemical and Biophysical Research Communications, 1994, 202, 44-48.	1.0	105
190	An ATPase Operon Involved in Copper Resistance by Enterococcus hirae. Annals of the New York Academy of Sciences, 1992, 671, 484-486.	1.8	98