
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5659831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformational Engineering of Two-Coordinate Gold(I) Complexes: Regulation of Excited-State Dynamics for Efficient Delayed Fluorescence. ACS Applied Materials & Interfaces, 2022, 14, 13539-13549.	4.0	20
2	Innenrücktitelbild: Selfâ€Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic Au ^I â€, Au ^I /Ag ^I â€, or Au ^I /Cu ^I â€Alkynyl Coordination (Angew. Chem. 21/2022). Angewandte Chemie, 2022, 134, .	1.6	0
3	Stable, Highâ€Efficiency Voltageâ€Dependent Colorâ€Tunable Organic Lightâ€Emitting Diodes with a Single Tetradentate Platinum(II) Emitter Having Long Operational Lifetime. Advanced Materials, 2021, 33, e2004873.	11.1	36
4	Câ^'H Activation by an Ironâ€Nitrido Bisâ€Pocket Porphyrin Species. Angewandte Chemie - International Edition, 2021, 60, 4796-4803.	7.2	8
5	Câ^'H Activation by an Ironâ€Nitrido Bisâ€Pocket Porphyrin Species. Angewandte Chemie, 2021, 133, 4846-4853.	1.6	1
6	Direct photo-induced reductive Heck cyclization of indoles for the efficient preparation of polycyclic indolinyl compounds. Chemical Science, 2021, 12, 14050-14058.	3.7	14
7	Luminescent Platinum(II) Complexes with Bidentate Diacetylide Ligands: Structures, Photophysical Properties and Application Studies. Chemistry - an Asian Journal, 2021, 16, 2978-2992.	1.7	4
8	Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d ⁸ and d ¹⁰ organometallic complexes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	45
9	Highly Efficient Thermally Activated Delayed Fluorescence from Pyrazineâ€Fused Carbene Au(I) Emitters. Chemistry - A European Journal, 2021, 27, 17834-17842.	1.7	27
10	Recent Advances in Metal-TADF Emitters and Their Application in Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 653.	1.8	38
11	Recent Advances in Metal Triplet Emitters with d6, d8, and d10 Electronic Configurations. Trends in Chemistry, 2020, 2, 796-812.	4.4	37
12	Innenrücktitelbild: Tetradentate Gold(III) Complexes as Thermally Activated Delayed Fluorescence (TADF) Emitters: Microwaveâ€Assisted Synthesis and Highâ€Performance OLEDs with Long Operational Lifetime (Angew. Chem. 16/2020). Angewandte Chemie, 2020, 132, 6693-6693.	1.6	0
13	Controlled Synthesis of PdII and PtII Supramolecular Copolymer with Sequential Multiblock and Amplified Phosphorescence. CheM, 2020, 6, 945-967.	5.8	67
14	Controlling Metallophilic Interactions in Chiral Gold(I) Double Salts towards Excitation Wavelength‶unable Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2020, 59, 6915-6922.	7.2	71
15	Tetradentate Gold(III) Complexes as Thermally Activated Delayed Fluorescence (TADF) Emitters: Microwaveâ€Assisted Synthesis and Highâ€Performance OLEDs with Long Operational Lifetime. Angewandte Chemie - International Edition, 2020, 59, 6375-6382.	7.2	68
16	Tetradentate Gold(III) Complexes as Thermally Activated Delayed Fluorescence (TADF) Emitters: Microwaveâ€Assisted Synthesis and Highâ€Performance OLEDs with Long Operational Lifetime. Angewandte Chemie, 2020, 132, 6437-6444.	1.6	18
17	Controlling Metallophilic Interactions in Chiral Gold(I) Double Salts towards Excitation Wavelengthâ€Tunable Circularly Polarized Luminescence. Angewandte Chemie, 2020, 132, 6982-6989.	1.6	20
18	Iron porphyrin catalysed light driven C–H bond amination and alkene aziridination with organic azides. Chemical Science, 2020, 11, 4680-4686.	3.7	48

#	Article	IF	CITATIONS
19	Luminescent tungsten(<scp>vi</scp>) complexes as photocatalysts for light-driven C–C and C–B bond formation reactions. Chemical Science, 2020, 11, 6370-6382.	3.7	33
20	Thermally Stable Donor–Acceptor Type (Alkynyl)Gold(III) TADF Emitters Achieved EQEs and Luminance of up to 23.4% and 70 300 cd m ^{â^22} in Vacuumâ€Deposited OLEDs. Advanced Science, 2019, 6, 1802297.	5.6	60
21	High-Efficiency Solution-Processed Organic Light-Emitting Diodes with Tetradentate Platinum(II) Emitters. ACS Applied Materials & Interfaces, 2019, 11, 45161-45170.	4.0	27
22	Efficient acceptorless photo-dehydrogenation of alcohols and <i>N</i> -heterocycles with binuclear platinum(<scp>ii</scp>) diphosphite complexes. Chemical Science, 2019, 10, 4883-4889.	3.7	77
23	Highâ€Performance Deepâ€Red/Nearâ€Infrared OLEDs with Tetradentate [Pt(O [^] N [^] C [^] N)] Emitters. Advanced Optical Materials, 2019, 7, 1801452.	3.6	37
24	Innenrücktitelbild: The Metal–Metalâ€toâ€Ligand Charge Transfer Excited State and Supramolecular Polymerization of Luminescent Pincer Pd ^{II} –Isocyanide Complexes (Angew. Chem. 12/2018). Angewandte Chemie, 2018, 130, 3319-3319.	1.6	0
25	Metal–organic framework composites with luminescent pincer platinum(<scp>ii</scp>) complexes: ³ MMLCT emission and photoinduced dehydrogenation catalysis. Chemical Science, 2018, 9, 2357-2364.	3.7	36
26	The Metal–Metalâ€toâ€Ligand Charge Transfer Excited State and Supramolecular Polymerization of Luminescent Pincer Pd ^{II} –Isocyanide Complexes. Angewandte Chemie - International Edition, 2018, 57, 3089-3093.	7.2	75
27	The Metal–Metalâ€toâ€Ligand Charge Transfer Excited State and Supramolecular Polymerization of Luminescent Pincer Pd ^{II} –Isocyanide Complexes. Angewandte Chemie, 2018, 130, 3143-3147.	1.6	24
28	Visible-Light-Promoted Transition-Metal-Free Phosphinylation of Heteroaryl Halides in the Presence of Potassium <i>tert</i> -Butoxide. Organic Letters, 2018, 20, 7816-7820.	2.4	53
29	Counteranion―and Solventâ€Mediated Chirality Transfer in the Supramolecular Polymerization of Luminescent Platinum(II) Complexes. Angewandte Chemie, 2018, 130, 17435-17439.	1.6	9
30	Counteranion―and Solventâ€Mediated Chirality Transfer in the Supramolecular Polymerization of Luminescent Platinum(II) Complexes. Angewandte Chemie - International Edition, 2018, 57, 17189-17193.	7.2	55
31	Luminescent Tungsten(VI) Complexes: Photophysics and Applicability to Organic Lightâ€Emitting Diodes and Photocatalysis. Angewandte Chemie, 2017, 129, 139-143.	1.6	13
32	Luminescent Cyclometalated Gold(III) Alkyl Complexes: Photophysical and Photochemical Properties. Inorganic Chemistry, 2017, 56, 5046-5059.	1.9	40
33	Luminescent Tungsten(VI) Complexes: Photophysics and Applicability to Organic Lightâ€Emitting Diodes and Photocatalysis. Angewandte Chemie - International Edition, 2017, 56, 133-137.	7.2	49
34	The interplay between fluorescence and phosphorescence with luminescent gold(<scp>i</scp>) and gold(<scp>iii</scp>) complexes bearing heterocyclic arylacetylide ligands. Chemical Science, 2017, 8, 2352-2364.	3.7	64
35	Highly Luminescent Pincer Gold(III) Aryl Emitters: Thermally Activated Delayed Fluorescence and Solutionâ€Processed OLEDs. Angewandte Chemie, 2017, 129, 14224-14229.	1.6	38
36	Highly Luminescent Pincer Gold(III) Aryl Emitters: Thermally Activated Delayed Fluorescence and Solutionâ€Processed OLEDs. Angewandte Chemie - International Edition, 2017, 56, 14036-14041.	7.2	133

#	Article	IF	CITATIONS
37	Palladium(II) Acetylide Complexes with Pincerâ€Type Ligands: Photophysical Properties, Intermolecular Interactions, and Photoâ€cytotoxicity. Chemistry - an Asian Journal, 2017, 12, 145-158.	1.7	29
38	The effects of chelating N ₄ ligand coordination on Co(<scp>ii</scp>)-catalysed photochemical conversion of CO ₂ to CO: reaction mechanism and DFT calculations. Catalysis Science and Technology, 2016, 6, 7408-7420.	2.1	59
39	Luminescent platinum(II) complexes with functionalized N-heterocyclic carbene or diphosphine selectively probe mismatched and abasic DNA. Nature Communications, 2016, 7, 10655.	5.8	66
40	A macromolecular cyclometalated gold(<scp>iii</scp>) amphiphile displays long-lived emissive excited state in water: self-assembly and in vitro photo-toxicity. Chemical Communications, 2016, 52, 13273-13276.	2.2	22
41	Deciphering Photoluminescence Dynamics and Reactivity of the Luminescent Metal–Metalâ€Bonded Excited State of a Binuclear Gold(I) Phosphine Complex Containing Open Coordination Sites. Chemistry - A European Journal, 2015, 21, 13888-13893.	1.7	35
42	Luminescent zinc(<scp>ii</scp>) and copper(<scp>i</scp>) complexes for high-performance solution-processed monochromic and white organic light-emitting devices. Chemical Science, 2015, 6, 4623-4635.	3.7	133
43	Luminescent Pincer Platinum(II) Complexes with Emission Quantum Yields up to Almost Unity: Photophysics, Photoreductive Cï£;C Bond Formation, and Materials Applications. Angewandte Chemie - International Edition, 2015, 54, 2084-2089.	7.2	134
44	Water oxidation catalysed by iron complex of <i>N</i> , <i>N</i> ≜ ² -dimethyl-2,11-diaza[3,3](2,6)pyridinophane. Spectroscopy of iron–oxo intermediates and density functional theory calculations. Chemical Science, 2015, 6, 5891-5903.	3.7	63
45	Metal–organic framework composites with luminescent gold(<scp>iii</scp>) complexes. Strongly emissive and long-lived excited states in open air and photo-catalysis. Chemical Science, 2015, 6, 7105-7111.	3.7	51
46	Color Tunable Organic Lightâ€Emitting Devices with External Quantum Efficiency over 20% Based on Strongly Luminescent Gold(III) Complexes having Long‣ived Emissive Excited States. Advanced Materials, 2014, 26, 2540-2546.	11.1	145
47	A Theoretical Investigation into the Luminescent Properties of d ⁸ â€Transitionâ€Metal Complexes with Tetradentate Schiff Base Ligands. Chemistry - A European Journal, 2014, 20, 6433-6443.	1.7	80
48	Luminescent Palladium(II) Complexes with Ï€â€Extended Cyclometalated [RC^N^NRâ€2] and Pentafluorophenylacetylide Ligands: Spectroscopic, Photophysical, and Photochemical Properties. Chemistry - an Asian Journal, 2014, 9, 534-545.	1.7	44
49	Selective Ag(I) Binding, H ₂ S Sensing, and White-Light Emission from an Easy-to-Make Porous Conjugated Polymer. Journal of the American Chemical Society, 2014, 136, 2818-2824.	6.6	117
50	Waterâ€Soluble Luminescent Cyclometalated Gold(III) Complexes with <i>cis</i> â€Chelating Bis(Nâ€Heterocyclic Carbene) Ligands: Synthesis and Photophysical Properties. Chemistry - A European Journal, 2014, 20, 8604-8614.	1.7	53
51	A Binuclear Gold(I) Complex with Mixed Bridging Diphosphine and Bis(Nâ€Heterocyclic Carbene) Ligands Shows Favorable Thiol Reactivity and Inhibits Tumor Growth and Angiogenesis Inâ€Vivo. Angewandte Chemie - International Edition, 2014, 53, 5810-5814.	7.2	128
52	Strongly Phosphorescent Palladium(II) Complexes of Tetradentate Ligands with Mixed Oxygen, Carbon, and Nitrogen Donor Atoms: Photophysics, Photochemistry, and Applications. Angewandte Chemie - International Edition, 2013, 52, 11775-11779.	7.2	100
53	A Robust Palladium(II)–Porphyrin Complex as Catalyst for Visible Light Induced Oxidative Cĩ£¿H Functionalization. Chemistry - A European Journal, 2013, 19, 5654-5664.	1.7	184
54	Strongly Luminescent Gold(III) Complexes with Longâ€Lived Excited States: High Emission Quantum Yields, Energy Upâ€Conversion, and Nonlinear Optical Properties. Angewandte Chemie - International Edition, 2013, 52, 6648-6652.	7.2	158

#	Article	IF	CITATIONS
55	Light-induced catalytic and cytotoxic properties of phosphorescent transition metal compounds with a d ⁸ electronic configuration. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120126.	1.6	27
56	Luminescent Organogold(III) Complexes with Long‣ived Triplet Excited States for Lightâ€Induced Oxidative CH Bond Functionalization and Hydrogen Production. Angewandte Chemie - International Edition, 2012, 51, 2654-2657.	7.2	195
57	Organoplatinum(II) Complexes with Chromophore–Acceptor Dyad Studied by Ultrafast Timeâ€Resolved Absorption Spectroscopy. Chemistry - an Asian Journal, 2010, 5, 60-65.	1.7	11
58	Cyclometalated Iron and Ruthenium Complexes Supported by a Tetradentate Ligand Scaffold with Mixed O, N, and C Donor Atoms: Synthesis, Structures, and Excited-State Properties. Organometallics, O, , .	1.1	2
59	Selfâ€Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic Au ^I â€, Au ^I /Ag ^I â€, or Au ^I /Cu ^I â€Alkynyl Coordination. Angewandte Chemie, 0, , .	1.6	5
60	Oxidative C-O bond cleavage of dihydroxybenzenes and conversion of coordinated cyanide to carbonyl by a luminescent Os(VI) cyanonitrido complex. Chemical Communications, 0, , .	2.2	3