
Ivo Nischang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/565958/publications.pdf Version: 2024-02-01

NO NISCHANC

#	Article	IF	CITATIONS
1	Regaining Potential: Studies Concerning 2-Ferrocenylethyl Methacrylate, Its Polymers, and Application in Redox Flow Batteries. Macromolecules, 2022, 55, 1576-1589.	4.8	6
2	Nanoparticle sizing in the field of nanomedicine: Power of an analytical ultracentrifuge. Analytica Chimica Acta, 2022, 1205, 339741.	5.4	9
3	A Viologen Polymer and a Compact Ferrocene: Comparison of Solution Viscosities and Their Performance in a Redox Flow Battery with a Size Exclusion Membrane. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	7
4	Ethoxy acetalated dextran-based nanocarriers accomplish efficient inhibition of leukotriene formation by a novel FLAP antagonist in human leukocytes and blood. Cellular and Molecular Life Sciences, 2022, 79, 1.	5.4	7
5	Polymer selection impacts the pharmaceutical profile of site-specifically conjugated Interferon-α2a. Journal of Controlled Release, 2022, 348, 881-892.	9.9	7
6	Well-defined poly(ethylene glycol) polymers as non-conventional reactive tracers of colloidal transport in porous media. Journal of Colloid and Interface Science, 2021, 584, 592-601.	9.4	6
7	Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery. International Journal of Pharmaceutics, 2021, 593, 120080.	5.2	23
8	Overcoming the Necessity of a Lateral Aggregation in the Formation of Supramolecular Polymer Bottlebrushes in Water. Macromolecular Rapid Communications, 2021, 42, 2000585.	3.9	2
9	Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polymer Chemistry, 2021, 12, 911-925.	3.9	5
10	Core-crosslinked, temperature- and pH-responsive micelles: design, physicochemical characterization, and gene delivery application. Nanoscale, 2021, 13, 19412-19429.	5.6	8
11	Drug-Induced Dynamics of Bile Colloids. Langmuir, 2021, 37, 2543-2551.	3.5	11
12	Kinetically Controlling the Length of Self-Assembled Polymer Nanofibers Formed by Intermolecular Hydrogen Bonds. ACS Macro Letters, 2021, 10, 837-843.	4.8	6
13	Stealth Effect of Short Polyoxazolines in Graft Copolymers: Minor Changes of Backbone End Group Determine Liver Cell-Type Specificity. ACS Nano, 2021, 15, 12298-12313.	14.6	17
14	Targeted delivery of a phosphoinositide 3â€kinase γ inhibitor to restore organ function in sepsis. EMBO Molecular Medicine, 2021, 13, e14436.	6.9	14
15	On the identification and quantification of proton-initiated species in the synthesis of poly(2-alkyl-2-oxazoline)s by high resolution liquid chromatography. Journal of Chromatography A, 2021, 1653, 462364.	3.7	3
16	Adjusting the length of supramolecular polymer bottlebrushes by top-down approaches. Beilstein Journal of Organic Chemistry, 2021, 17, 2621-2628.	2.2	3
17	Reincarnation of the Analytical Ultracentrifuge: Emerging Opportunities for Nanomedicine. Analytical Chemistry, 2021, 93, 15805-15815.	6.5	9
18	Mechanical Activation of Terpyridine Metal Complexes in Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 230-242.	3.7	7

IVO NISCHANG

#	Article	IF	CITATIONS
19	Revisiting very disperse macromolecule populations in hydrodynamic and light scattering studies of sodium carboxymethyl celluloses. Carbohydrate Polymers, 2020, 229, 115452.	10.2	13
20	"Hard―Sphere Behavior of "Soft― Globular-like, Hyperbranched Polyglycerols – Extensive Molecular Hydrodynamic and Light Scattering Studies. Macromolecules, 2020, 53, 9220-9233.	4.8	6
21	Formulation of Liver-Specific PLGA-DY-635 Nanoparticles Loaded with the Protein Kinase C Inhibitor BisindolyImaleimide I. Pharmaceutics, 2020, 12, 1110.	4.5	6
22	Aqueous Redox Flow Battery Suitable for High Temperature Applications Based on a Tailorâ€Made Ferrocene Copolymer. Advanced Energy Materials, 2020, 10, 2001825.	19.5	43
23	Unraveling Decisive Structural Parameters for the Self-Assembly of Supramolecular Polymer Bottlebrushes Based on Benzene Trisureas. Macromolecules, 2020, 53, 7552-7560.	4.8	10
24	Salient features of medical nanoparticles in biological fluids from an analytical ultracentrifuge. Nanoscale, 2020, 12, 22462-22466.	5.6	8
25	Impact of amino acids on the aqueous self-assembly of benzenetrispeptides into supramolecular polymer bottlebrushes. Polymer Chemistry, 2020, 11, 6763-6771.	3.9	9
26	In Situ, Quantitative Assessment of Multifunctional Nanoscale Drug Delivery Systems in Human Serum. Analytical Chemistry, 2020, 92, 7932-7939.	6.5	15
27	Polysaccharide valproates: Structure - property relationships in solution. Carbohydrate Polymers, 2020, 246, 116652.	10.2	12
28	Incentives of Using the Hydrodynamic Invariant and Sedimentation Parameter for the Study of Naturally- and Synthetically-Based Macromolecules in Solution. Polymers, 2020, 12, 277.	4.5	22
29	(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl-Containing Zwitterionic Polymer as Catholyte Species for High-Capacity Aqueous Polymer Redox Flow Batteries. Chemistry of Materials, 2019, 31, 7987-7999.	6.7	64
30	The influence of directed hydrogen bonds on the self-assembly of amphiphilic polymers in water. Journal of Colloid and Interface Science, 2019, 557, 488-497.	9.4	14
31	The influence of gradient and statistical arrangements of guanidinium or primary amine groups in poly(methacrylate) copolymers on their DNA binding affinity. Journal of Materials Chemistry B, 2019, 7, 5920-5929.	5.8	11
32	Tannic Acid-Mediated Aggregate Stabilization of Poly(N-vinylpyrrolidone)-b-poly(oligo (ethylene) Tj ETQq0 0 0 rgE	BT /Qverloo 4.1	ck 10 Tf 50 2
33	POx as an Alternative to PEC? A Hydrodynamic and Light Scattering Study. Macromolecules, 2018, 51, 1905-1916.	4.8	89
34	An aqueous all-organic redox-flow battery employing a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte. Journal of Power Sources, 2018, 378, 546-554.	7.8	65
35	Lichtgesteuerte Freisetzung von Chemikalien aus polymeren Nano―und Mikropartikelbehäern. Angewandte Chemie, 2018, 130, 2504-2508.	2.0	3

36Photocontrolled Release of Chemicals from Nano―and Microparticle Containers. Angewandte Chemie -
International Edition, 2018, 57, 2479-2482.13.825

Ivo Nischang

#	Article	IF	CITATIONS
37	Fast Screening of Diol Impurities in Methoxy Poly(Ethylene Glycol)s (mPEG)s by Liquid Chromatography on Monolithic Silica Rods. Polymers, 2018, 10, 1395.	4.5	10
38	"Green―ethers as solvent alternatives for anionic ring-opening polymerizations of ethylene oxide (EO): In-situ kinetic and advanced characterization studies. Polymer, 2018, 159, 86-94.	3.8	10
39	Analytical ultracentrifugation (AUC): a seminal tool offering multiple solutions. European Biophysics Journal, 2018, 47, 693-696.	2.2	4
40	PMMA-g-OEtOx Graft Copolymers: Influence of Grafting Degree and Side Chain Length on the Conformation in Aqueous Solution. Materials, 2018, 11, 528.	2.9	15
41	Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites. Analytical Chemistry, 2017, 89, 1185-1193.	6.5	34
42	Site-Specific POxylation of Interleukin-4. ACS Biomaterials Science and Engineering, 2017, 3, 304-312.	5.2	40
43	Gold Nanoparticle@Polyhedral Oligomeric Silsesquioxane Hybrid Scaffolds in Microfluidic Format – Highly Efficient and Green Catalytic Platforms. European Journal of Inorganic Chemistry, 2016, 2016, 951-955.	2.0	9
44	Porous polymer monoliths: From their fundamental structure to analytical engineering applications. TrAC - Trends in Analytical Chemistry, 2016, 75, 108-117.	11.4	76
45	Radical-mediated step-growth: Preparation of hybrid polymer monolithic columns with fine control of nanostructural and chromatographic characteristics. Journal of Chromatography A, 2015, 1412, 112-125.	3.7	32
46	Critical differences in chromatographic properties of silica- and polymer-based monoliths. Journal of Chromatography A, 2014, 1358, 165-171.	3.7	36
47	Impact of biomolecule solute size on the transport and performance characteristics of analytical porous polymer monoliths. Journal of Chromatography A, 2014, 1354, 56-64.	3.7	13
48	Conceptual Design of Large Surface Area Porous Polymeric Hybrid Media Based on Polyhedral Oligomeric Silsesquioxane Precursors: Preparation, Tailoring of Porous Properties, and Internal Surface Functionalization. ACS Applied Materials & Interfaces, 2013, 5, 2517-2526.	8.0	74
49	Porous polymer monoliths: Morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. Journal of Chromatography A, 2013, 1287, 39-58.	3.7	110
50	Assessing the Nanoscale Structure and Mechanical Properties of Polymer Monoliths used for Chromatography. Analytical Chemistry, 2013, 85, 5645-5649.	6.5	43
51	Tailorâ€Made Hybrid Organic–Inorganic Porous Materials Based on Polyhedral Oligomeric Silsesquioxanes (POSS) by the Stepâ€Growth Mechanism of Thiolâ€Ene "Click―Chemistry. Chemistry - A European Journal, 2013, 19, 17310-17313.	3.3	100
52	Impact of mobile phase composition on the performance of porous polymeric monoliths in the elution of small molecules. Journal of Chromatography A, 2012, 1263, 108-112.	3.7	22
53	On the chromatographic efficiency of analytical scale column format porous polymer monoliths: Interplay of morphology and nanoscale gel porosity. Journal of Chromatography A, 2012, 1236, 152-163.	3.7	51
54	Multifunctional and biodegradable polyphosphazenes for use as macromolecular anti-cancer drug carriers. Polymer Chemistry, 2011, 2, 828-834.	3.9	46

Ivo Nischang

#	Article	IF	CITATIONS
55	Porous polymer monoliths for small molecule separations: advancements and limitations. Analytical and Bioanalytical Chemistry, 2011, 400, 2289-2304.	3.7	103
56	Separation of adrenergic amines in <i>Citrus aurantium</i> L. var. <i>amara</i> by capillary electrochromatography using a novel monolithic stationary phase. Journal of Separation Science, 2011, 34, 2301-2304.	2.5	13
57	Facile, Singleâ€Step Preparation of Versatile, Highâ€Surfaceâ€Area, Hierarchically Structured Hybrid Materials. Angewandte Chemie - International Edition, 2011, 50, 4592-4596.	13.8	84
58	Advances in the preparation of porous polymer monoliths in capillaries and microfluidic chips with focus on morphological aspects. Analytical and Bioanalytical Chemistry, 2010, 397, 953-960.	3.7	70
59	Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. Journal of Chromatography A, 2010, 1217, 7514-7522.	3.7	92
60	Electrochromatographic retention of peptides on strong cationâ€exchange stationary phases. Electrophoresis, 2010, 31, 933-943.	2.4	4
61	On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. Journal of Chromatography A, 2010, 1217, 5389-5397.	3.7	113
62	Application of MEKC and monolithic CEC for the analysis of bioactive naphthoquinones in <i>Eleutherine americana</i> . Electrophoresis, 2009, 30, 3757-3763.	2.4	10
63	Inherent peak compression of charged analytes in electrochromatography. Journal of Separation Science, 2009, 32, 3157-3168.	2.5	5
64	Effect of capillary cross-section geometry and size on the separation of proteins in gradient mode using monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) columns. Journal of Chromatography A, 2009, 1216, 2355-2361.	3.7	47
65	Downscaling Limits and Confinement Effects in the Miniaturization of Porous Polymer Monoliths in Narrow Bore Capillaries. Analytical Chemistry, 2009, 81, 7390-7396.	6.5	52
66	Concentration polarization and nonequilibrium electroosmotic slip in hierarchical monolithic structures. Electrophoresis, 2008, 29, 1140-1151.	2.4	10
67	Concentration Polarization and Nonequilibrium Electroosmotic Slip in Dense Multiparticle Systems. Langmuir, 2007, 23, 9271-9281.	3.5	23
68	Fluid dynamics in capillary and chip electrochromatography. Electrophoresis, 2007, 28, 611-626.	2.4	31
69	Key to Analyte Migration and Retention in Electrochromatography. Analytical Chemistry, 2006, 78, 3601-3608.	6.5	18
70	Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds. Journal of Chromatography A, 2006, 1109, 32-50.	3.7	47
71	Perspective on concentration polarization effects in electrochromatographic separations. Electrophoresis, 2005, 26, 391-404.	2.4	34
72	Nonlinear electroosmosis in hierarchical monolithic structures. Electrophoresis, 2004, 25, 2935-2945.	2.4	19

#	Article	IF	CITATIONS
73	Deviceless decoupled electrochemical detection of catecholamines in capillary electrophoresis using gold microband array electrodes. Electrophoresis, 2002, 23, 3678-3682.	2.4	23