
Vahid Tavallali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5659340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactive compounds of <i>Punica granatum</i> L. wastes by high performance liquid chromatography analysis. Natural Product Research, 2022, , 1-5.	1.8	1
2	Foliar Application of Nano-Silicon Complexes on Growth, Oxidative Damage and Bioactive Compounds of Feverfew Under Drought Stress. Silicon, 2022, 14, 10245-10256.	3.3	9
3	Developmental and phytochemical changes in pot marigold (Calendula officinalis L.) using exogenous application of polyamines. Plant Physiology and Biochemistry, 2022, 183, 128-137.	5.8	6
4	Modifications in Lemongrass (Cymbopogon spp.) in response to green synthesized nano-selenium complex. Scientia Horticulturae, 2022, 303, 111222.	3.6	1
5	Nano-Silicon Complexes Enhance Growth, Yield, Water Relations and Mineral Composition in Tanacetum parthenium under Water Deficit Stress. Silicon, 2021, 13, 2493-2508.	3.3	21
6	Guava. , 2020, , 341-354.		7
7	Using gypsum and selenium foliar application for mineral biofortification and improving the bioactive compounds of garlic ecotypes. Industrial Crops and Products, 2020, 154, 112742.	5.2	15
8	Developing a nano-Fe Complex to Supply Iron and Improve Salinity Tolerance of Pistachio under Calcium Bicarbonate Stress. Communications in Soil Science and Plant Analysis, 2020, 51, 1835-1851.	1.4	11
9	Iron-urea nano-complex improves bioactive compounds in essential oils of Ocimum basilicum L Scientia Horticulturae, 2020, 265, 109222.	3.6	15
10	Iron nano-complexes and iron chelate improve biological activities of sweet basil (Ocimum basilicum) Tj ETQq0 0	0 rgBT /O\ 5.8	verlock 10 Tf
11	Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gas-exchange. Journal of Plant Physiology, 2019, 234-235, 98-105.	3.5	38
12	Antioxidant activity, polyphenolic contents and essential oil composition of aniseed (Pimpinella) Tj ETQq0 0 0 rgB 2018, 12, 1065-1071.	T /Overloo 3.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
13	Preserving quality of fresh walnuts using plant extracts. LWT - Food Science and Technology, 2018, 91, 1-7.	5.2	38
14	Nitrogen and potassium requirements of tomato plants for the optimization of fruit quality and antioxidative capacity during storage. Journal of Food Measurement and Characterization, 2018, 12, 755-762.	3.2	18
15	Boron Enhances Antioxidative Defense in the Leaves of Salt-affected <i>Pistacia vera</i> Seedlings. Horticulture Journal, 2018, 87, 55-62.	0.8	21
16	Effects of iron nano-complex and Fe-EDDHA on bioactive compounds and nutrient status of purslane plants. International Agrophysics, 2018, 32, 411-419.	1.7	8
17	Inducing drought tolerance in greenhouse grown Juglans regia by imposing controlled salt stress: The role of osmotic adjustment. Scientia Horticulturae, 2018, 239, 181-192.	3.6	30

18Variations in sweet basil in response to Green synthesized Zinc-Amino nano complexes. Journal of
Cleaner Production, 2018, 196, 452-459.9.316

VAHID TAVALLALI

#	Article	IF	CITATIONS
19	Boron amendment improves water relations and performance of Pistacia vera under salt stress. Scientia Horticulturae, 2018, 241, 252-259.	3.6	13
20	Maintenance of physicochemical qualities of lime during cold storage using vacuum infiltration with salicylic acid. Journal of Food Measurement and Characterization, 2018, 12, 2955-2963.	3.2	6
21	VACUUM INFILTRATION OF 24-EPIBRASSINOLIDE DELAYS CHLOROPHYLL DEGRADATION AND MAINTAINS QUALITY OF LIME DURING COLD STORAGE. Acta Scientiarum Polonorum, Hortorum Cultus, 2018, 17, 35-48.	0.6	9
22	EFFECT OF IRON NANO CHELATE ON ANTIOXIDANT ACTIVITY, POLYPHENOLIC CONTENTS AND ESSENTIAL OIL COMPOSITION OF Portulaca oleracea L Acta Scientiarum Polonorum, Hortorum Cultus, 2018, 17, 179-190.	0.6	1
23	Interactive effects of zinc and boron on growth, photosynthesis, and water relations in pistachio. Journal of Plant Nutrition, 2017, 40, 1588-1603.	1.9	31
24	Antioxidant activity, polyphenolic contents and essential oil composition of <i>Pimpinella anisum</i> L. as affected by zinc fertilizer. Journal of the Science of Food and Agriculture, 2017, 97, 4883-4889.	3.5	20
25	Interactive effects of soil salinity and boron on growth, mineral composition and CO2 assimilation of pistachio seedlings. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	10
26	Characterization and Influence of Green Synthesis of Nanoâ€Sized Zinc Complex with 5â€Aminolevulinic Acid on Bioactive Compounds of Aniseed. Chemistry and Biodiversity, 2017, 14, e1700197.	2.1	11
27	Green Synthesized Zinc-Glycine Chelate Enhances Antioxidant Protection of Pistachio under Different Soil Boron Levels. International Journal of Fruit Science, 2017, 17, 423-439.	2.4	3
28	Using controlled salt stress and β-aminobutyric acid signaling to decrease transplant failure. Scientia Horticulturae, 2017, 225, 156-162.	3.6	13
29	The effectiveness of zinc in alleviating salinity stress on pistachio seedlings. Fruits, 2016, 71, 433-445.	0.4	2
30	The ameliorative effects of spermidine and calcium chloride on chilling injury in pomegranate fruits after long-term storage. Fruits, 2010, 65, 169-178.	0.4	32
31	Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae, 2009, 123, 272-279.	3.6	70
32	Ameliorative Effects of Zinc on Pistachio (Pistacia vera L.) Growth under Salt-Affected Soil Conditions. Research Journal of Environmental Sciences, 2009, 3, 656-666.	0.5	8
33	Calcium induces salinity tolerance in pistachio rootstocks. Fruits, 2008, 63, 285-296.	0.4	20
34	Growth and Chemical Composition of Hybrid GF677 (Prunus amygdalusxPrunus persica) Influenced by Salinity Levels of Irrigation Water. Asian Journal of Plant Sciences, 2008, 7, 309-313.	0.4	0
35	Effects of rootstock on Iranian pistachio scion cultivars. Fruits, 2007, 62, 317-323.	0.4	9
36	Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia) Tj ETQqO	0 0 rgBT / 2.1	Overlock 10 38

Forestry, 0, , .