Suzanne Cory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5658932/publications.pdf Version: 2024-02-01

SUZANNE CODV

#	Article	IF	CITATIONS
1	Joan Heath interviews Suzanne Cory and Joan Steitz: a female perspective of science in the swinging â€~60s. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	0
2	CITED2 coordinates key hematopoietic regulatory pathways to maintain the HSC pool in both steady-state hematopoiesis and transplantation. Stem Cell Reports, 2021, 16, 2784-2797.	2.3	6
3	Development and Survival of MYC-driven Lymphomas Requires MYC-Antagonist MNT to Curb MYC-induced Apoptosis. Blood, 2020, 135, 1019-1031.	0.6	19
4	Impact of elevated anti-apoptotic MCL-1 and BCL-2 on the development and treatment of MLL-AF9 AML in mice. Cell Death and Differentiation, 2019, 26, 1316-1331.	5.0	36
5	A Joint Odyssey into Cancer Genetics. Annual Review of Cancer Biology, 2019, 3, 1-19.	2.3	3
6	Differential effects of Vavâ€promoterâ€driven overexpression of BCLX and BFL1 on lymphocyte survival and B cell lymphomagenesis. FEBS Journal, 2018, 285, 1403-1418.	2.2	5
7	Anti-apoptotic A1 is not essential for lymphoma development in Eµ-Myc mice but helps sustain transplanted Eµ-Myc tumour cells. Cell Death and Differentiation, 2018, 25, 797-808.	5.0	15
8	The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death and Differentiation, 2018, 25, 27-36.	5.0	422
9	Phosphatidylserine hide-and-seek. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12092-12094.	3.3	3
10	Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice. Cell Death and Differentiation, 2017, 24, 397-408.	5.0	7
11	Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death and Differentiation, 2017, 24, 878-888.	5.0	103
12	Mnt modulates Myc-driven lymphomagenesis. Cell Death and Differentiation, 2017, 24, 2117-2126.	5.0	16
13	Targeting BCL-2-like Proteins to Kill Cancer Cells. Trends in Cancer, 2016, 2, 443-460.	3.8	114
14	Impact of loss of BH3-only proteins on the development and treatment of MLL-fusion gene-driven AML in mice. Cell Death and Disease, 2016, 7, e2351-e2351.	2.7	6
15	Masterminding B Cells. Journal of Immunology, 2015, 195, 763-765.	0.4	2
16	Donald Metcalf: The father of modern hematology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2628-2629.	3.3	1
17	Abstract IA31: Harnessing death for life , 2015, , .		0
18	Plasmacytomagenesis in Eμ-v-abl transgenic mice is accelerated when apoptosis is restrained. Blood, 2014, 124, 1099-1109.	0.6	11

#	Article	IF	CITATIONS
19	Professor David James Kemp OAM FAA: 1945–2013. Microbiology Australia, 2014, 35, 68.	0.1	Ο
20	Australian academy is fair to women. Nature, 2013, 497, 439-439.	13.7	1
21	ABT-199, a new Bcl-2–specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood, 2013, 121, 2285-2288.	0.6	172
22	Elevated Mcl-1 inhibits thymocyte apoptosis and alters thymic selection. Cell Death and Differentiation, 2012, 19, 1962-1971.	5.0	13
23	BH3-only proteins in apoptosis at a glance. Journal of Cell Science, 2012, 125, 1081-1087.	1.2	141
24	Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood, 2012, 119, 5807-5816.	0.6	168
25	Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13135-13140.	3.3	98
26	Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO Journal, 2011, 30, 3667-3683.	3.5	432
27	Maximal killing of lymphoma cells by DNA damage–inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood, 2010, 116, 5256-5267.	0.6	87
28	Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood, 2010, 116, 3197-3207.	0.6	115
29	In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17961-17966.	3.3	137
30	BCL-2: From Translocation to Therapy. , 2008, , 346-346.		0
31	Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Current Opinion in Immunology, 2007, 19, 488-496.	2.4	560
32	MYC levels govern hematopoietic tumor type and latency in transgenic mice. Blood, 2006, 108, 653-661.	0.6	61
33	The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell, 2006, 10, 389-399.	7.7	1,149
34	T-cell lymphomas mask slower developing B-lymphoid and myeloid tumours in transgenic mice with broad haemopoietic expression of MYC. Oncogene, 2005, 24, 3544-3553.	2.6	38
35	Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer Cell, 2005, 8, 5-6.	7.7	196
36	Subversion of the Bcl-2 Life/Death Switch in Cancer Development and Therapy. Cold Spring Harbor Symposia on Quantitative Biology, 2005, 70, 469-477.	2.0	26

#	Article	IF	CITATIONS
37	Bim is a suppressor of Myc-induced mouse B cell leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6164-6169.	3.3	444
38	VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood, 2004, 103, 2276-2283.	0.6	193
39	The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene, 2003, 22, 8590-8607.	2.6	1,342
40	Apoptosomes: engines for caspase activation. Current Opinion in Cell Biology, 2002, 14, 715-720.	2.6	269
41	BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature, 2002, 415, 922-926.	13.7	713
42	The Bcl2 family: regulators of the cellular life-or-death switch. Nature Reviews Cancer, 2002, 2, 647-656.	12.8	3,457
43	Degenerative Disorders Caused by Bcl-2 Deficiency Prevented by Loss of Its BH3-Only Antagonist Bim. Developmental Cell, 2001, 1, 645-653.	3.1	265
44	Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death and Differentiation, 2001, 8, 486-494.	5.0	94
45	Life-or-death decisions by the Bcl-2 protein family. Trends in Biochemical Sciences, 2001, 26, 61-66.	3.7	832
46	The Role of Bim, a Proapoptotic BH3â€Only Member of the Bclâ€2 Family, in Cellâ€Death Control. Annals of the New York Academy of Sciences, 2000, 917, 541-548.	1.8	113
47	The Role of the Proâ€Apoptotic Bclâ€2 Family Member Bim in Physiological Cell Death. Annals of the New York Academy of Sciences, 2000, 926, 83-89.	1.8	28
48	Wavering on commitment. Nature, 1999, 401, 538-539.	13.7	11
49	Survival activity of Bcl-2 homologs Bcl-w and A1 only partially correlates with their ability to bind pro-apoptotic family members. Cell Death and Differentiation, 1999, 6, 525-532.	5.0	45
50	Transgenic models of lymphoid neoplasia and development of a pan-hematopoietic vector. Oncogene, 1999, 18, 5268-5277.	2.6	73
51	Retroviral transduction of enriched hematopoietic stem cells allows lifelong Bcl-2 expression in multiple lineages but does not perturb hematopoiesis. Experimental Hematology, 1999, 27, 75-87.	0.2	14
52	Control of Apoptosis in Hematopoietic Cells by the Bcl-2 Family of Proteins. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 351-358.	2.0	29
53	Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO Journal, 1998, 17, 384-395.	3.5	1,005
54	The Bcl-2 Protein Family: Arbiters of Cell Survival. , 1998, 281, 1322-1326.		4,650

#	Article	IF	CITATIONS
55	Bcl-2, Bcl-xL and adenovirus protein E1B19kD are functionally equivalent in their ability to inhibit cell death. Oncogene, 1997, 14, 405-414.	2.6	244
56	The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO Journal, 1997, 16, 4628-4638.	3.5	290
57	Regulation of Lymphocyte Survival by the BCL-2 Gene Family. Annual Review of Immunology, 1995, 13, 513-543.	9.5	387
58	Insights from transgenic mice regarding the role of bcl-2 in normal and neoplastic lymphoid cells. , 1995, , 53-59.		0
59	Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1376-1380.	3.3	148
60	Fascinating death factor. Nature, 1994, 367, 317-318.	13.7	27
61	Bcl-2 expression promotes B- but not T-lymphoid development in scid mice. Nature, 1994, 368, 457-460.	13.7	150
62	DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell, 1994, 79, 329-339.	13.5	651
63	B-lymphoid to granulocytic switch during hematopoiesis in a transgenic mouse strain. Immunity, 1994, 1, 517-527.	6.6	28
64	Enhanced Cell Survival and Tumorigenesis. Cold Spring Harbor Symposia on Quantitative Biology, 1994, 59, 365-375.	2.0	29
65	Elimination of self-reactive B lymphocytes proceeds in two stages: Arrested development and cell death. Cell, 1993, 72, 325-335.	13.5	483
66	bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell, 1991, 67, 889-899.	13.5	1,062
67	Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8661-8665.	3.3	815
68	Transgenic models for haemopoietic malignancies. Biochimica Et Biophysica Acta: Reviews on Cancer, 1991, 1072, 9-31.	3.3	16
69	Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature, 1990, 348, 331-333.	13.7	873
70	In vivo expression of interleukin 5 induces an eosinophilia and expanded Ly-1B lineage populations. International Immunology, 1990, 2, 965-971.	1.8	44
71	Immunoglobulin JH rearrangement in a T-cell line reflects fusion to the D H locus at a sequence lacking the nonamer recognition signal. Immunogenetics, 1988, 28, 255-259.	1.2	8
72	Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 1988, 335, 440-442.	13.7	3,029

#	Article	IF	CITATIONS
73	Transgenic Mice and Oncogenesis. Annual Review of Immunology, 1988, 6, 25-48.	9.5	114
74	The c-myc oncogene perturbs B lymphocyte development in Eμ-myc transgenic mice. Cell, 1986, 47, 11-18.	13.5	452
75	Activation Of Cellular Oncogenes in Hemopoietic Cells by Chromosome Translocation. Advances in Cancer Research, 1986, 47, 189-234.	1.9	337
76	c-Myc-Induced Lymphomagenesis in Transgenic Mice and the Role of the Pvt-1 Locus in Lymphoid Neoplasia. Current Topics in Microbiology and Immunology, 1986, 132, 1-8.	0.7	8
77	Lessons from Translocations and Transgenic Mice: Constitutive c-myc Expression Predisposes to Neoplasia. , 1986, , 675-682.		2
78	Murine T lymphomas with retroviral inserts in the chromosomal 15 locus for plasmacytoma variant translocations. Nature, 1985, 314, 740-743.	13.7	150
79	Transposition of the immunoglobulin heavy chain enhancer to the myc oncogene in a murine plasmacytoma. Cell, 1985, 40, 71-79.	13.5	107
80	Immunoglobulin Variable Region Genes. Pathology and Immunopathology Research, 1984, 3, 149-164.	0.8	3
81	Variant (6 ; 15) translocation in a murine plasmacytoma occurs near an immunoglobulin κ gene but far from the myc oncogene. Nature, 1984, 312, 777-779.	13.7	92
82	Translocation of the myc cellular oncogene to the immunoglobulin heavy chain locus in murine plasmacytomas is an imprecise reciprocal exchange. Cell, 1984, 36, 973-982.	13.5	136
83	Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell, 1984, 37, 113-122.	13.5	426
84	Activation of the c-myc Oncogene in B and T Lymphoid Tumors. Current Topics in Microbiology and Immunology, 1984, 113, 161-165.	0.7	9
85	Oncogenes and B-lymphocyte neoplasia. Trends in Immunology, 1983, 4, 205-207.	7.5	6
86	Recombination events near the immunoglobulin C.mu. gene join variable and constant region genes, switch heavy-chain expression, or inactivate the locus. Biochemistry, 1981, 20, 2662-2671.	1.2	18
87	Organization and Expression of Murine Immunoglobulin Genes. Immunological Reviews, 1981, 59, 5-32.	2.8	49
88	Deletions in the constant region locus can account for switches in immunoglobulin heavy chain expression. Nature, 1980, 285, 450-456.	13.7	107
89	Cloned embryonic DNA sequences flanking the mouse immunoglobulin Cγ3and Cγ1genes. Nucleic Acids Research, 1980, 8, 6019-6032.	6.5	16
90	Deletions are associated with somatic rearrangement of immunoglobulin heavy chain genes. Cell, 1980, 19, 37-51.	13.5	168

#	Article	IF	CITATIONS
91	Molecular cloning of seven mouse immunoglobulin .kappa. chain messenger ribonucleic acids. Biochemistry, 1980, 19, 2702-2710.	1.2	51
92	Molecular cloning of mouse immunoglobulin heavy chain messenger ribonucleic acids coding for .mu., .alpha., .gamma.1, .gamma.2a, and .gamma.3 chains. Biochemistry, 1980, 19, 2711-2719.	1.2	32
93	Identical 3′ non-coding sequences in five mouse Ig κ chain mRNAs favour a unique Cκ gene. Nature, 1979, 281, 394-396.	13.7	13
94	A very large repeating unit of mouse DNA containing the 18S, 28S and 5.8S rRNA genes. Cell, 1977, 11, 795-805.	13.5	105
95	Noncoding nucleotide sequence in the 3'-terminal region of a mouse immunoglobulin .kappa. chain messenger RNA determined by analysis of complementary DNA. Biochemistry, 1977, 16, 4117-4125.	1.2	10
96	Synthesis of complementary RNA on RNA templates using the DNA-dependent RNA polymerase of Escherichia coli. Nucleic Acids and Protein Synthesis, 1977, 478, 407-416.	1.7	5
97	Comparison of immunoglobulin chains made in ascites extract and reticulocyte lysate programmed with mRNA from four mouse myelomas. Nucleic Acids and Protein Synthesis, 1977, 476, 303-320.	1.7	2
98	Modified nucleosides and 5′-end groups in purified mouse immunoglobulin light chain mRNA and rabbit globin mRNA detected by borohydride labelling. Nucleic Acids and Protein Synthesis, 1976, 454, 248-262.	1.7	23
99	Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 1975, 255, 28-33.	13.7	446
100	The modified 5′-terinal sequences in messenger RNA of mouse myeloma cells. Journal of Molecular Biology, 1975, 99, 519-547.	2.0	110
101	Translation of immunoglobulin mRNAs in a wheat germ cell-free system. Molecular Biology Reports, 1974, 1, 355-363.	1.0	47
102	Nucleotide sequence from the 5' end to the first cistron of R17 bacteriophage ribonucleic acid. Biochemistry, 1972, 11, 976-988.	1.2	36
103	Sequence of 51 nucleotides at the 3′-end of R17 bacteriophage RNA. Journal of Molecular Biology, 1972, 63, 41-56.	2.0	39
104	Nucleotide Sequences of Fragments of R17 Bacteriophage RNA from the Region Immediately Preceding the Coat-Protein Cistron. FEBS Journal, 1972, 29, 469-479.	0.2	27
105	Untranslated Nucleotide Sequence at the 5′-End of R 17 Bacteriophage RNA. Nature, 1970, 227, 570-574.	13.7	86
106	The Nucleotide Sequence of Methionine Transfer RNAM. FEBS Journal, 1970, 12, 177-194.	0.2	63
107	Nucleotide Sequence of N-Formyl-methionyl-transfer RNA. Nature, 1968, 218, 232-233.	13.7	319
108	Primary Structure of a Methionine Transfer RNA from Escherichia coli. Nature, 1968, 220, 1039-1040.	13.7	146

#	Article	IF	CITATIONS
109	Separation of two initiator transfer RNAs from E. coli. FEBS Letters, 1968, 1, 259-261.	1.3	16
110	Further studies on the incorporation of [32P] phosphate into nucleic acids of normal and boron-deficient tissue. Phytochemistry, 1967, 6, 211-215.	1.4	9
111	Amino acid-dependent ATP-pyrophosphate exchange in normal and boron deficient bean roots. Phytochemistry, 1966, 5, 609-618.	1.4	13
112	The incorporation of [32P]phosphate into nucleic acids of normal and boron-deficient bean roots. Phytochemistry, 1966, 5, 625-634.	1.4	10