Paul Midgley

List of Publications by Citations

Source: https://exaly.com/author-pdf/5658515/paul-midgley-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 15,963 382 115 h-index g-index citations papers 6.6 17,687 6.73 410 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
382	3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. <i>Ultramicroscopy</i> , 2003 , 96, 413-31	3.1	863
381	Electron tomography and holography in materials science. <i>Nature Materials</i> , 2009 , 8, 271-80	27	669
380	Double conical beam-rocking system for measurement of integrated electron diffraction intensities. <i>Ultramicroscopy</i> , 1994 , 53, 271-282	3.1	558
379	High-performance nanocatalysts for single-step hydrogenations. <i>Accounts of Chemical Research</i> , 2003 , 36, 20-30	24.3	515
378	Direct imaging of single-walled carbon nanotubes in cells. <i>Nature Nanotechnology</i> , 2007 , 2, 713-7	28.7	476
377	Electron tomography. <i>Materials Today</i> , 2004 , 7, 32-40	21.8	386
376	Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. <i>Nature</i> , 2013 , 502, 80-4	50.4	370
375	Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. <i>Scientific Reports</i> , 2013 , 3, 1652	4.9	369
374	A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. <i>Nature Nanotechnology</i> , 2018 , 13, 702-707	28.7	316
373	StructureActivity Relationship in Nanostructured CopperDeria-Based Preferential CO Oxidation Catalysts. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11026-11038	3.8	266
372	Charge-ordered ferromagnetic phase in La(0.5)Ca(0.5)MnO3. <i>Nature</i> , 2002 , 420, 797-800	50.4	2 60
371	A sol-gel monolithic metal-organic framework with enhanced methane uptake. <i>Nature Materials</i> , 2018 , 17, 174-179	27	257
370	3D imaging of nanomaterials by discrete tomography. <i>Ultramicroscopy</i> , 2009 , 109, 730-40	3.1	230
369	Compressed sensing electron tomography. <i>Ultramicroscopy</i> , 2013 , 131, 70-91	3.1	209
368	Z-Contrast tomography: a technique inthree-dimensional nanostructural analysis based on Rutherfordscattering. <i>Chemical Communications</i> , 2001 , 907-908	5.8	207
367	Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis. <i>Nano Letters</i> , 2007 , 7, 421-5	11.5	203
366	Encapsulation for long-term stability enhancement of perovskite solar cells. <i>Nano Energy</i> , 2016 , 30, 162	!-1 7 2	200

(2009-2017)

365	Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks. <i>ACS Nano</i> , 2017 , 11, 2742-2755	16.7	192
364	Nanotomography in the chemical, biological and materials sciences. <i>Chemical Society Reviews</i> , 2007 , 36, 1477-94	58.5	181
363	Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. <i>Biomaterials</i> , 2009 , 30, 4152-60	15.6	174
362	Stabilization of Single Metal Atoms on Graphitic Carbon Nitride. <i>Advanced Functional Materials</i> , 2017 , 27, 1605785	15.6	172
361	Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. <i>Nature</i> , 2020 , 580, 360-366	50.4	155
360	Embedded nanostructures revealed in three dimensions. <i>Science</i> , 2005 , 309, 2195-8	33.3	151
359	Quantitative electron holography of biased semiconductor devices. <i>Physical Review Letters</i> , 2002 , 88, 238302	7.4	141
358	Single-step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4782-5	16.4	138
357	Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. <i>Acta Biomaterialia</i> , 2006 , 2, 409-19	10.8	137
356	Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel. <i>Scripta Materialia</i> , 2011 , 65, 509-512	5.6	135
355	Three-dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CS-ET) approach. <i>Nano Letters</i> , 2011 , 11, 4666-73	11.5	133
354	Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials. <i>Ultramicroscopy</i> , 2006 , 106, 994-1000	3.1	133
353	Magnetite morphology and life on Mars. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 13490-5	11.5	133
352	Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. <i>ACS Nano</i> , 2009 , 3, 1485-92	16.7	121
351	High-resolution three-dimensional imaging of dislocations. <i>Science</i> , 2006 , 313, 319	33.3	121
350	Surface plasmon modes of a single silver nanorod: an electron energy loss study. <i>Optics Express</i> , 2011 , 19, 15371-9	3.3	116
349	Impedance spectroscopy of epitaxial multiferroic thin films. Physical Review B, 2007, 75,	3.3	110
348	Single-step process to prepare CeO2 nanotubes with improved catalytic activity. <i>Nano Letters</i> , 2009 , 9, 1395-400	11.5	108

347	Room temperature ferromagnetism in bulk Mn-Doped Cu2O. <i>Applied Physics Letters</i> , 2005 , 86, 072514	3.4	108
346	Weak charge-lattice coupling requires reinterpretation of stripes of charge order in La1-xCaxMnO3. <i>Physical Review Letters</i> , 2005 , 94, 097202	7.4	108
345	Electron Tomography of Nanoparticle Catalysts on Porous Supports: A New Technique Based on Rutherford Scattering. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7882-7886	3.4	107
344	Four-dimensional spectral tomography of carbonaceous nanocomposites. <i>Nano Letters</i> , 2006 , 6, 376-9	11.5	104
343	Gold and iodine diffusion in large area perovskite solar cells under illumination. <i>Nanoscale</i> , 2017 , 9, 470	0 7 4⁄70€	i 103
342	Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. <i>Environmental Science & Environmental &</i>	10.3	101
341	Surface Structure, Hydration, and Cationic Sites of Nanohydroxyapatite: UHR-TEM, IR, and Microgravimetric Studies. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4027-4035	3.8	99
340	An introduction to off-axis electron holography. <i>Micron</i> , 2001 , 32, 167-84	2.3	90
339	Precession electron diffraction - a topical review. <i>IUCrJ</i> , 2015 , 2, 126-36	4.7	89
338	Large-scale ordering of nanoparticles using viscoelastic shear processing. <i>Nature Communications</i> , 2016 , 7, 11661	17.4	88
337	Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. <i>National Science Review</i> , 2018 , 5, 642-652	10.8	82
336	Bimetallic Ru-Sn nanoparticle catalysts for the solvent-free selective hydrogenation of 1,5,9-cyclododecatriene to cyclododecene. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8182-5	16.4	76
335	Measurement of molecular motion in organic semiconductors by thermal diffuse electron scattering. <i>Nature Materials</i> , 2013 , 12, 1045-9	27	75
334	Superconductivity and the incommensurate structural modulation in the heavy fermion UPt3. <i>Physical Review Letters</i> , 1993 , 70, 678-681	7.4	74
333	3 D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5313-5	16.4	70
332	Characteristics of mixed phase superconductivity in oxygenated La2CuO4+\(\pi\)Physica C: Superconductivity and Its Applications, 1991 , 173, 9-24	1.3	70
331	Wave-front phase retrieval in transmission electron microscopy via ptychography. <i>Physical Review B</i> , 2010 , 82,	3.3	69
330	Morphological study of nanoparticle-polymer solar cells using high-angle annular dark-field electron tomography. <i>Nano Letters</i> , 2011 , 11, 904-9	11.5	66

(2006-2007)

329	High-Resolution Three-Dimensional Mapping of Semiconductor Dopant Potentials. <i>Nano Letters</i> , 2007 , 7, 2020-2023	11.5	65
328	Transition-Metal Decorated Aluminum Nanocrystals. <i>ACS Nano</i> , 2017 , 11, 10281-10288	16.7	64
327	Atom-by-Atom Resolution of Structure-Function Relations over Low-Nuclearity Metal Catalysts. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8724-8729	16.4	64
326	Recent advances in the application of electron tomography to materials chemistry. <i>Accounts of Chemical Research</i> , 2012 , 45, 1782-91	24.3	64
325	High-resolution transmission electron microscopy: the ultimate nanoanalytical technique. <i>Chemical Communications</i> , 2004 , 1253-67	5.8	64
324	Improved CO oxidation activity in the presence and absence of hydrogen over cluster-derived PtFe/SiO2 catalysts. <i>Langmuir</i> , 2006 , 22, 5160-7	4	63
323	An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells. <i>Nature Nanotechnology</i> , 2015 , 10, 361-9	28.7	62
322	Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis. <i>Nature Communications</i> , 2015 , 6, 7267	17.4	62
321	Electron Tomography in the (S)TEM: From Nanoscale Morphological Analysis to 3D Atomic Imaging. <i>Annual Review of Materials Research</i> , 2012 , 42, 59-79	12.8	62
320	Three-Dimensional Nanoparticle Distribution and Local Curvature of Heterogeneous Catalysts Revealed by Electron Tomography. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11501-11505	3.8	60
319	A novel dual-axis iterative algorithm for electron tomography. <i>Journal of Structural Biology</i> , 2006 , 153, 55-63	3.4	60
318	Differentiation of tin oxides using electron energy-loss spectroscopy. <i>Physical Review B</i> , 2004 , 69,	3.3	60
317	Nanoscale analysis of three-dimensional structures by electron tomography. <i>Scripta Materialia</i> , 2006 , 55, 29-33	5.6	59
316	Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography. <i>Microscopy and Microanalysis</i> , 2003 , 9, 542-55	0.5	59
315	High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopy. <i>Ultramicroscopy</i> , 2011 , 111, 1168-75	3.1	58
314	Toward three-dimensional nanoengineering of heterogeneous catalysts. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5716-9	16.4	58
313	The chemical application of high-resolution electron tomography: bright field or dark field?. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 6745-7	16.4	57
312	Improvement in electron holographic phase images of focused-ion-beam-milled GaAs and Si p-n junctions by in situ annealing. <i>Applied Physics Letters</i> , 2006 , 88, 063510	3.4	56

311	Coarsening behaviour and interfacial structure of 2 precipitates in Co-Al-W based superalloys. <i>Acta Materialia</i> , 2016 , 120, 14-23	8.4	55
310	Image-spectroscopyI. The advantages of increased spectral information for compositional EFTEM analysis. <i>Ultramicroscopy</i> , 2001 , 88, 179-86	3.1	55
309	High-Resolution Scanning Transmission Electron Tomography and Elemental Analysis of Zeptogram Quantities of Heterogeneous Catalyst. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 4590-4592	3.4	53
308	Using highly accurate 3D nanometrology to model the optical properties of highly irregular nanoparticles: a powerful tool for rational design of plasmonic devices. <i>Nano Letters</i> , 2010 , 10, 2097-10	4 ^{11.5}	50
307	Metal-organic framework crystal-glass composites. <i>Nature Communications</i> , 2019 , 10, 2580	17.4	49
306	Liquid phase blending of metal-organic frameworks. <i>Nature Communications</i> , 2018 , 9, 2135	17.4	49
305	Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination. <i>Chemical Science</i> , 2019 , 10, 359-369	9.4	48
304	High-resolution imaging of nanoparticle bimetallic catalysts supported on mesoporous silica. <i>Catalysis Letters</i> , 1999 , 60, 113-120	2.8	48
303	On the precipitation of delta phase in ALLVACII 718Plus. <i>Philosophical Magazine</i> , 2014 , 94, 1132-1152	1.6	47
302	TEM characterization of Ge precipitates in an Al-1.6at% Ge alloy. <i>Ultramicroscopy</i> , 2008 , 108, 210-20	3.1	47
301	3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography. <i>Nano Letters</i> , 2016 , 16, 5068-73	11.5	47
300	Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography. <i>Chemical Physics Letters</i> , 2006 , 418, 540-543	2.5	46
299	On the crystallography and composition of topologically close-packed phases in ATI 718Plus . <i>Acta Materialia</i> , 2017 , 130, 271-280	8.4	45
298	Eigenmode Tomography of Surface Charge Oscillations of Plasmonic Nanoparticles by Electron Energy Loss Spectroscopy. <i>ACS Photonics</i> , 2015 , 2, 1628-1635	6.3	45
297	Mechanical Properties and Processing Techniques of Bulk Metal-Organic Framework Glasses. Journal of the American Chemical Society, 2019 , 141, 1027-1034	16.4	45
296	Three-dimensional analysis of dislocation networks in GaN using weak-beam dark-field electron tomography. <i>Philosophical Magazine</i> , 2006 , 86, 4901-4922	1.6	44
295	Sol © el Synthesis of Robust Metal © rganic Frameworks for Nanoparticle Encapsulation. <i>Advanced Functional Materials</i> , 2018 , 28, 1705588	15.6	43
294	Microstructure and Solidification Sequence of the Interdendritic Region in a Third Generation Single-Crystal Nickel-Base Superalloy. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2009 , 40, 1660-1669	2.3	43

(2020-2006)

293	Crystallographic order in multi-walled carbon nanotubes synthesized in the presence of nitrogen. <i>Small</i> , 2006 , 2, 774-84	11	43
292	Do Images of Biskyrmions Show Type-II Bubbles?. <i>Advanced Materials</i> , 2019 , 31, e1806598	24	41
291	Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 2331-9	9.5	41
290	Quantitative electron holographic tomography for the 3D characterisation of semiconductor device structures. <i>Ultramicroscopy</i> , 2008 , 108, 1401-7	3.1	40
289	Multicomponent signal unmixing from nanoheterostructures: overcoming the traditional challenges of nanoscale X-ray analysis via machine learning. <i>Nano Letters</i> , 2015 , 15, 2716-20	11.5	39
288	Compressed sensing electron tomography of needle-shaped biological specimensPotential for improved reconstruction fidelity with reduced dose. <i>Ultramicroscopy</i> , 2016 , 160, 230-238	3.1	39
287	Nanoscale scanning transmission electron tomography. <i>Journal of Microscopy</i> , 2006 , 223, 185-90	1.9	39
286	Off-axis electron holography of electrostatic potentials in unbiased and reverse biased focused ion beam milled semiconductor devices. <i>Journal of Microscopy</i> , 2004 , 214, 287-96	1.9	39
285	Conventional and back-side focused ion beam milling for off-axis electron holography of electrostatic potentials in transistors. <i>Ultramicroscopy</i> , 2005 , 103, 67-81	3.1	39
284	Extended ptychography in the transmission electron microscope: possibilities and limitations. <i>Ultramicroscopy</i> , 2011 , 111, 1117-23	3.1	38
283	Three-dimensional electron backscattered diffraction analysis of deformation in MgO micropillars. <i>Acta Materialia</i> , 2011 , 59, 7241-7254	8.4	38
282	3-D characterization of CdSe nanoparticles attached to carbon nanotubes. <i>Nano Research</i> , 2008 , 1, 89-9	9 7 10	37
281	Flux melting of metal-organic frameworks. <i>Chemical Science</i> , 2019 , 10, 3592-3601	9.4	37
280	The location of gold nanoparticles on titania: A study by high resolution aberration-corrected electron microscopy and 3D electron tomography. <i>Catalysis Today</i> , 2011 , 160, 165-169	5.3	36
279	Measurement of three-dimensional intensity data in electron diffraction by the precession technique. <i>Ultramicroscopy</i> , 1998 , 74, 147-157	3.1	36
278	A simple new method to obtain high angular resolution 🛭 patterns. Ultramicroscopy, 1999 , 76, 91-96	3.1	36
277	Resonances of nanoparticles with poor plasmonic metal tips. Scientific Reports, 2015, 5, 17431	4.9	35
276	Direct Imaging of Correlated Defect Nanodomains in a Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 13081-13089	16.4	34

275	Reduced-dose and high-speed acquisition strategies for multi-dimensional electron microscopy. <i>Advanced Structural and Chemical Imaging</i> , 2015 , 1,	3.9	34
274	Superhydrophobic supported Ag-NPs@ZnO-nanorods with photoactivity in the visible range. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1341-1346		34
273	Quantitative High-Angle Annular Dark-Field Scanning Transmission Electron Microscope (HAADF-STEM) Tomography and High-Resolution Electron Microscopy of Unsupported Intermetallic GaPd2 Catalysts. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13343-13352	3.8	34
272	Dislocation electron tomography and precession electron diffraction Iminimising the effects of dynamical interactions in real and reciprocal space. <i>Philosophical Magazine</i> , 2010 , 90, 4711-4730	1.6	34
271	Morphology of SBA-15-directed by association processes and surface energies. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 10973-82	3.6	34
270	Electronic structure of tin oxides by electron energy loss spectroscopy and real-space multiple scattering calculations. <i>Physical Review B</i> , 2005 , 71,	3.3	34
269	Magnetic domain-wall width in La0.7Ca0.3MnO3 thin films measured using Fresnel imaging. <i>Physical Review B</i> , 2001 , 64,	3.3	34
268	Revisiting metal fluorides as lithium-ion battery cathodes. <i>Nature Materials</i> , 2021 , 20, 841-850	27	34
267	Structural Surface Investigations of Cerium Zirconium Mixed Oxide Nanocrystals with Enhanced Reducibility. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 9001-9004	3.8	33
266	A novel 3D absorption correction method for quantitative EDX-STEM tomography. <i>Ultramicroscopy</i> , 2016 , 160, 118-129	3.1	32
265	Is precession electron diffraction kinematical? Part I: "Phase-scrambling" multislice simulations. <i>Ultramicroscopy</i> , 2010 , 110, 763-70	3.1	32
264	Dislocation tomography made easy: a reconstruction from ADF STEM images obtained using automated image shift correction. <i>Journal of Physics: Conference Series</i> , 2008 , 126, 012013	0.3	32
263	An Introduction to Energy-Filtered Transmission Electron Microscopy. <i>Topics in Catalysis</i> , 2002 , 21, 109	-13.8	32
262	Refining structures against reflection rank: an alternative metric for electron crystallography. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2012 , 68, 352-8		31
261	Incorporation of platinum nanoparticles in ordered mesoporous carbon. <i>Journal of Colloid and Interface Science</i> , 2007 , 305, 204-8	9.3	31
260	Severe local strain and the plastic deformation of Guinier B reston zones in the AlAg system revealed by three-dimensional electron tomography. <i>Acta Materialia</i> , 2006 , 54, 2957-2963	8.4	31
259	Off-axis electron holography of unbiased and reverse-biased focused ion beam milled Si p-n junctions. <i>Microscopy and Microanalysis</i> , 2005 , 11, 66-78	0.5	31
258	Image-spectroscopyII. The removal of plural scattering from extended energy-filtered series by Fourier deconvolution. <i>Ultramicroscopy</i> , 2001 , 88, 187-94	3.1	31

(2007-2016)

257	Electron Energy Loss Spectroscopy Investigation into Symmetry in Gold Trimer and Tetramer Plasmonic Nanoparticle Structures. <i>ACS Nano</i> , 2016 , 10, 8552-63	16.7	31
256	Progress and opportunities in EELS and EDS tomography. <i>Ultramicroscopy</i> , 2017 , 180, 133-141	3.1	29
255	Large dielectric response to the paramagnetic-ferromagnetic transition (TC~100 K) in multiferroic BiMnO3 epitaxial thin films. <i>Physical Review B</i> , 2009 , 79,	3.3	29
254	Highly anisotropic distribution of iron nanoparticles within MCM-41 Mesoporous Silica. <i>Micron</i> , 2006 , 37, 52-6	2.3	29
253	The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions. <i>Journal of Applied Physics</i> , 2007 , 101, 094508	2.5	28
252	Multi-scale three-dimensional characterization of iron particles in dusty olivine: Implications for paleomagnetism of chondritic meteorites. <i>American Mineralogist</i> , 2016 , 101, 2070-2084	2.9	28
251	Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases <i>Science</i> , 2021 , 374, 1598-1605	33.3	28
250	Electron Tomography Imaging and Analysis of 🛭 and Domains in Ni-based Superalloys. <i>Advanced Materials</i> , 2008 , 20, 1905-1909	24	27
249	A new approach to the investigation of nanoparticles: electron tomography with compressed sensing. <i>Journal of Colloid and Interface Science</i> , 2013 , 392, 7-14	9.3	26
248	Structure determination of the intermediate tin oxide Sn3O4 by precession electron diffraction. <i>Zeitschrift Fil Kristallographie</i> , 2010 , 225, 56-66		26
247	Strain control of superlattice implies weak charge-lattice coupling in La0.5Ca0.5MnO3. <i>Physical Review B</i> , 2006 , 73,	3.3	26
246	Denoising time-resolved microscopy image sequences with singular value thresholding. <i>Ultramicroscopy</i> , 2017 , 178, 112-124	3.1	25
245	Unsupervised machine learning applied to scanning precession electron diffraction data. <i>Advanced Structural and Chemical Imaging</i> , 2019 , 5,	3.9	25
244	Excitation dependent Fano-like interference effects in plasmonic silver nanorods. <i>Physical Review B</i> , 2014 , 90,	3.3	25
243	Quantitative off-axis electron holography of GaAs p-n junctions prepared by focused ion beam milling. <i>Journal of Microscopy</i> , 2009 , 233, 102-13	1.9	25
242	EGa2O3 grown by low temperature atomic layer deposition on sapphire. <i>Journal of Crystal Growth</i> , 2018 , 487, 23-27	1.6	24
241	Is precession electron diffraction kinematical? Part II A practical method to determine the optimum precession angle. <i>Ultramicroscopy</i> , 2010 , 110, 771-7	3.1	24
240	Bimetallic Cluster Provides a Higher Activity Electrocatalyst for Methanol Oxidation. <i>Journal of Cluster Science</i> , 2007 , 18, 121-130	3	24

239	Single-crystal magnetic metal films on GaAs grown by electrodeposition. <i>Applied Physics Letters</i> , 1995 , 67, 1316-1318	3.4	24
238	Synthesis and Properties of a Compositional Series of MIL-53(Al) Metal-Organic Framework Crystal-Glass Composites. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15641-15648	16.4	23
237	On three-dimensional misorientation spaces. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2017 , 473, 20170274	2.4	23
236	The modern electron microscope: A cornucopia of chemico-physical insights. <i>Chemical Physics</i> , 2011 , 385, 1-10	2.3	23
235	Three-dimensional analysis of BaZrO3 pinning centers gives isotropic superconductivity in GdBa2Cu3O7\(\textit{IJournal of Applied Physics}\), 2010 , 108, 063901	2.5	23
234	Measurement of DebyeMaller factors by electron precession. <i>Ultramicroscopy</i> , 1998 , 75, 61-67	3.1	23
233	Micromagnetic imaging to determine the nature of the ferromagnetic phase transition in La(0.7)Ca(0.3)MnO3. <i>Physical Review Letters</i> , 2006 , 96, 027214	7.4	23
232	Structural and Optical Properties of Discrete Dendritic Pt Nanoparticles on Colloidal Au Nanoprisms. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 20843-20851	3.8	23
231	Quantitative electron diffraction: From atoms to bonds. <i>Contemporary Physics</i> , 1996 , 37, 441-456	3.3	22
230	Crystallographic relationships of T-/S-phase aggregates in an AlluMgAg alloy. <i>Acta Materialia</i> , 2019 , 166, 587-596	8.4	22
229	Anomalous diffusion of single metal atoms on a graphene oxide support. <i>Chemical Physics Letters</i> , 2017 , 683, 370-374	2.5	21
228	Nanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: A short surveyNanoscale electron tomography and atomic scale high-resolution electron microscopy of nanoparticles and nanoclusters: A short surveyretain>.	3.6	21
227	Visualization of the three-dimensional microstructure of TiO2 nanotubes by electron tomography. <i>Catalysis Today</i> , 2009 , 143, 225-229	5.3	21
226	Nanomagnetic properties of the meteorite cloudy zone. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E11436-E11445	11.5	21
225	Fabrication and characterization of TiN-Ag nano-dice. <i>Micron</i> , 2009 , 40, 308-12	2.3	20
224	Directional sinogram inpainting for limited angle tomography. <i>Inverse Problems</i> , 2019 , 35, 024004	2.3	20
223	High-resolution scanning precession electron diffraction: Alignment and spatial resolution. <i>Ultramicroscopy</i> , 2017 , 174, 79-88	3.1	19
222	Multi-dimensional electron microscopy. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8614-7	16.4	19

221	Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography. <i>Ultramicroscopy</i> , 2013 , 134, 160-6	3.1	19	
220	Some Turning Points in the Chemical Electron Microscopic Study of Heterogeneous Catalysts. <i>ChemCatChem</i> , 2013 , 5, 2560-2579	5.2	19	
219	Quantitative zone-axis convergent-beam electron diffraction (CBED) studies of metals. I. Structure-factor measurements. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 1999 , 55, 471-479		19	
218	Energy-filtered convergent-beam diffraction: examples and future prospects. <i>Ultramicroscopy</i> , 1995 , 59, 1-13	3.1	19	
217	Local Crystallinity in Twisted Cellulose Nanofibers. ACS Nano, 2021, 15, 2730-2737	16.7	19	
216	Formation of Intergranular M23C6 in Sensitized Type-347 Stainless Steel. <i>ISIJ International</i> , 2014 , 54, 148-152	1.7	18	
215	Comparison of off-axis and in-line electron holography as quantitative dopant-profiling techniques. <i>Philosophical Magazine</i> , 2006 , 86, 5805-5823	1.6	18	
214	Direct visualisation, by aberration-corrected electron microscopy, of the crystallisation of bimetallic nanoparticle catalysts. <i>Chemical Communications</i> , 2005 , 5805-7	5.8	18	
213	The Chemical Application of High-Resolution Electron Tomography: Bright Field or Dark Field?. <i>Angewandte Chemie</i> , 2004 , 116, 6913-6915	3.6	18	
212	The rapidly changing face of electron microscopy. <i>Chemical Physics Letters</i> , 2015 , 631-632, 103-113	2.5	17	
211	Functional Group Mapping by Electron Beam Vibrational Spectroscopy from Nanoscale Volumes. <i>Nano Letters</i> , 2020 , 20, 1272-1279	11.5	17	
210	Hardness and microstructural variation of Al-Mg-Mn-Sc-Zr alloy. <i>Micron</i> , 2016 , 82, 1-8	2.3	17	
209	Nanoconfinement of Ni clusters towards a high sintering resistance of steam methane reforming catalysts. <i>Catalysis Science and Technology</i> , 2012 , 2, 2476	5.5	17	
208	Soft plasma processing of organic nanowires: a route for the fabrication of 1D organic heterostructures and the template synthesis of inorganic 1D nanostructures. <i>Nanoscale</i> , 2011 , 3, 4554-9	₉ 7.7	17	
207	Scanning Transmission Electron Microscopy Investigation of Differences in the High Temperature Redox Deactivation Behavior of CePrOx Particles Supported on Modified Alumina. <i>Chemistry of Materials</i> , 2009 , 21, 1035-1045	9.6	17	
206	Materials science. Electronic bonding revealed by electron diffraction. <i>Science</i> , 2011 , 331, 1528-9	33.3	17	
205	Resputtering and morphological changes of Au nanoparticles in nanocomposites as a function of the deposition conditions of the oxide capping layer. <i>Nanotechnology</i> , 2005 , 16, 718-723	3.4	17	
204	Secondary magnetite in ancient zircon precludes analysis of a Hadean geodynamo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 407-412	11.5	17	

203	Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires. <i>Physical Review B</i> , 2016 , 93,	3.3	16
202	Direct visualization of symmetry breaking during janus nanoparticle formation. <i>Small</i> , 2012 , 8, 2698-703	311	16
201	Weak-beam dark-field electron tomography of dislocations in GaN. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 247-250	0.3	16
200	On the microstructure of the charge density wave observed in La1lk Ca x MnO3. <i>Philosophical Magazine</i> , 2005 , 85, 999-1015	1.6	16
199	Quantitative electron holography of biased semiconductor devices. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S181-S192	1.8	16
198	Probing the spatial distribution and morphology of supported nanoparticles using rutherford-scattered electron imaging. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 3804-7	16.4	16
197	Measurement of magnetic domain wall width using energy-filtered Fresnel images. <i>Journal of Microscopy</i> , 2002 , 207, 118-28	1.9	16
196	The use of Bethe potentials in zone-axis CBED pattern matching. <i>Ultramicroscopy</i> , 1996 , 65, 45-52	3.1	16
195	Blind source separation aided characterization of the 🛭 strengthening phase in an advanced nickel-based superalloy by spectroscopic 4D electron microscopy. <i>Acta Materialia</i> , 2016 , 107, 229-238	8.4	16
194	Electron tomography provides a direct link between the Payne effect and the inter-particle spacing of rubber composites. <i>Scientific Reports</i> , 2014 , 4, 7389	4.9	15
193	Synthetic mimetics of the endogenous gastrointestinal nanomineral: Silent constructs that trap macromolecules for intracellular delivery. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2017 , 13, 619-630	6	15
192	Enhanced quantification for 3D SEM-EDS: using the full set of available X-ray lines. <i>Ultramicroscopy</i> , 2015 , 148, 158-167	3.1	15
191	Symmetry-modified charge flipping. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2009 , 65, 120-7		15
190	Single-Step Conversion of Dimethyl Terephthalate into Cyclohexanedimethanol with Ru5PtSn, a Trimetallic Nanoparticle Catalyst. <i>Angewandte Chemie</i> , 2006 , 118, 4900-4903	3.6	15
189	Real-space imaging of coexisting charge-ordered and monoclinic phases in La1\(\mathbb{U}\)CaxMnO3 (x=0.67 and 0.71). <i>Physical Review B</i> , 2005 , 71,	3.3	15
188	Crystal size and shape analysis of Pt nanoparticles in two and three dimensions. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 367-370	0.3	15
187	Zinc Vanadates in Vanadium Oxide-Doped Zinc Oxide Varistors. <i>Journal of the American Ceramic Society</i> , 2004 , 84, 435-41	3.8	15
186	Machine learning as a tool for classifying electron tomographic reconstructions. <i>Advanced Structural and Chemical Imaging</i> , 2015 , 1,	3.9	14

185	Precession Electron Diffraction. Advances in Imaging and Electron Physics, 2012, 170, 1-63	0.2	14
184	Revealing the Atomic Structure of Intermetallic GaPd2 Nanocatalysts by using Aberration-Corrected Scanning Transmission Electron Microscopy. <i>ChemCatChem</i> , 2013 , 5, 2599-2609	5.2	14
183	Determination of the nature of the tetragonal to orthorhombic phase transition in SrFe2As2 by measurement of the local order parameter. <i>Physical Review B</i> , 2010 , 81,	3.3	14
182	Very weak electron-phonon coupling and strong strain coupling in manganites. <i>Physical Review B</i> , 2008 , 78,	3.3	14
181	Ruthenium-coated ruthenium oxide nanorods. <i>Applied Physics Letters</i> , 2004 , 85, 5385-5387	3.4	14
180	The Structure of a Metastable Außn Phase Determined by Convergent Beam Electron Diffraction. Journal of Solid State Chemistry, 1996 , 124, 132-142	3.3	14
179	Subwavelength Spatially Resolved Coordination Chemistry of Metal-Organic Framework Glass Blends. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17862-17866	16.4	14
178	On the nature of the omega tri-layer periodicity in rapidly cooled Ti-15Mo. <i>Scripta Materialia</i> , 2015 , 107, 79-82	5.6	13
177	Exploring the benefits of electron tomography to characterize the precise morphology of core-shell Au@Ag nanoparticles and its implications on their plasmonic properties. <i>Nanoscale</i> , 2014 , 6, 12696-702	7.7	13
176	Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron energy-loss spectroscopy by modal decomposition. <i>Physical Review B</i> , 2013 , 87,	3.3	13
175	Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations. <i>Ultramicroscopy</i> , 2013 , 134, 44-7	3.1	13
174	Sub-nanometer surface chemistry and orbital hybridization in lanthanum-doped ceria nano-catalysts revealed by 3D electron microscopy. <i>Scientific Reports</i> , 2017 , 7, 5406	4.9	13
173	Crystal Face Distributions and Surface Site Densities of Two Synthetic Goethites: Implications for Adsorption Capacities as a Function of Particle Size. <i>Langmuir</i> , 2017 , 33, 8924-8932	4	13
172	Low-temperature thermal decomposition of large single crystals of ammonium perchlorate. <i>Chemical Physics Letters</i> , 2008 , 454, 233-236	2.5	13
171	Crystal structure of the superconducting layered cobaltate NaxCoO2lyD2O. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, 3293-3304	1.8	13
170	Quantitative zone-axis convergent-beam electron diffraction (CBED) studies of metals. II. Debye-Waller-factor measurements. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 1999 , 55, 480-488		13
169	Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls. <i>Scientific Reports</i> , 2016 , 6, 20637	4.9	13
168	The Dark Side of EDX Tomography: Modeling Detector Shadowing to Aid 3D Elemental Signal Analysis. <i>Microscopy and Microanalysis</i> , 2015 , 21, 759-64	0.5	12

167	Controlled 3D-coating of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic Fe(x)Co(3-x)O4 nanolayers. <i>Nanoscale</i> , 2013 , 5, 5561-7	7.7	12
166	Titanium fullerenoid oxides. <i>Applied Physics Letters</i> , 2005 , 87, 201906	3.4	12
165	Activation of Copper Species on Carbon Nitride for Enhanced Activity in the Arylation of Amines. <i>ACS Catalysis</i> , 2020 , 10, 11069-11080	13.1	12
164	Atom-by-Atom Resolution of Structure E unction Relations over Low-Nuclearity Metal Catalysts. <i>Angewandte Chemie</i> , 2019 , 131, 8816-8821	3.6	11
163	Advanced Electron Microscopy Investigation of CerialZirconia-Based Catalysts. <i>ChemCatChem</i> , 2011 , 3, 1015-1027	5.2	11
162	Self-assembly of one-pot synthesized CexZr1NO2BaOlhAl2O3 nanocomposites promoted by site-selective doping of alumina with barium. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3645	13	10
161	Fabrication and characterization of TiN nanocomposite powders fabricated by DC arc-plasma method. <i>Journal of Alloys and Compounds</i> , 2010 , 492, 685-690	5.7	10
160	The frontiers of microscopy. <i>Materials Today</i> , 2008 , 11, 8-11	21.8	10
159	Coherent overlapping LACBED patterns in 6H SiC. <i>Ultramicroscopy</i> , 1993 , 50, 365-376	3.1	10
158	Phase diagrams of liquid-phase mixing in multi-component metal-organic framework glasses constructed by quantitative elemental nano-tomography. <i>APL Materials</i> , 2019 , 7, 091111	5.7	9
157	Magnetic structure of individual flux vortices in superconducting MgB2 derived using transmission electron microscopy. <i>Physical Review B</i> , 2013 , 87,	3.3	9
156	The structure of two new non-centrosymmetric phases of oxygen deficient bismuth manganite. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15417		9
155	NETWORKS OF NANOPARTICLES IN ORGANIC [INORGANIC COMPOSITES: ALGORITHMIC EXTRACTION AND STATISTICAL ANALYSIS. <i>Image Analysis and Stereology</i> , 2012 , 31, 27	1	9
154	Three-dimensional electrostatic potential of a Sip-njunction revealed using tomographic electron holography. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 29-32	0.3	9
153	Direct observation of the flux line lattice in Al-doped YBa2Cu3O7\(\textit{IPhysica C: Superconductivity}\) and Its Applications, 1992 , 199, 73-83	1.3	9
152	Analytical electron tomography. <i>MRS Bulletin</i> , 2016 , 41, 531-536	3.2	8
151	Low voltage STEM imaging of multi-walled carbon nanotubes. <i>Micron</i> , 2012 , 43, 428-34	2.3	8
150	Optimization of Three-Dimensional (3D) Chemical Imaging by Soft X-Ray Spectro-Tomography Using a Compressed Sensing Algorithm. <i>Microscopy and Microanalysis</i> , 2017 , 23, 951-966	0.5	8

(2004-2008)

149	Limited local electron-lattice coupling in manganites: An electron diffraction study. <i>Physical Review B</i> , 2008 , 77,	3.3	8	
148	Local study of the magnetism of Co-doped ZnO thin films. <i>Journal Physics D: Applied Physics</i> , 2006 , 39, 1739-1742	3	8	
147	Electron tomography of Pt nanocatalyst particles and their carbon support. <i>Journal of Physics:</i> Conference Series, 2006 , 26, 203-206	0.3	8	
146	Structural Elucidation of Pt-Ru Heterogeneous Catalysts by Electron Tomography. <i>Microscopy and Microanalysis</i> , 2004 , 10, 34-35	0.5	8	
145	Nanocrystal segmentation in scanning precession electron diffraction data. <i>Journal of Microscopy</i> , 2020 , 279, 158-167	1.9	8	
144	Advances in the Synthesis and Long-Term Protection of Zero-Valent Iron Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2018 , 35, 1800120	3.1	8	
143	Self-Assembly of the Nonplanar Fe(III) Phthalocyanine Small-Molecule: Unraveling the Impact on the Magnetic Properties of Organic Nanowires. <i>Chemistry of Materials</i> , 2018 , 30, 879-887	9.6	7	
142	Imaging flux vortices in type II superconductors with a commercial transmission electron microscope. <i>Ultramicroscopy</i> , 2009 , 109, 700-29	3.1	7	
141	Low-temperature thermal decomposition of crystalline partly and completely deuterated ammonium perchlorate. <i>Chemical Physics Letters</i> , 2011 , 504, 185-188	2.5	7	
140	Mapping the electrical properties of semiconductor junctionsthe electron holographic approach. <i>Scanning</i> , 2008 , 30, 299-309	1.6	7	
139	Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry. <i>ChemSusChem</i> , 2016 , 9, 423-7	8.3	7	
138	Practical Implementation of Compressive Sensing for High Resolution STEM. <i>Microscopy and Microanalysis</i> , 2016 , 22, 558-559	0.5	7	
137	Imaging flux vortices in MgB2 using transmission electron microscopy. <i>Physica C: Superconductivity and Its Applications</i> , 2012 , 474, 18-20	1.3	6	
136	Surfactant-free coating of thiols on gold nanoparticles using sonochemistry: a study of competing processes. <i>Ultrasonics Sonochemistry</i> , 2014 , 21, 1886-92	8.9	6	
135	A practical approach to test the scope of FIB-SEM 3D reconstruction. <i>Journal of Physics: Conference Series</i> , 2010 , 241, 012081	0.3	6	
134	A novel dual-axis reconstruction algorithm for electron tomography. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 33-36	0.3	6	
133	Characterization of the magnetic properties of a GdBa2Cu3O7/La0.75Sr0.25MnO3 superlattice using off-axis electron holography. <i>Applied Surface Science</i> , 2006 , 252, 3977-3983	6.7	6	
132	Direct evidence of phase coexistence in La0.5Ca0.5MnO3. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, 13-14	2.8	6	

131	Observation of Hexatic Vortex Glass in Al-Doped YBa2Cu3O7-xSingle Crystals. <i>Japanese Journal of Applied Physics</i> , 1993 , 32, L990-L993	1.4	6
130	Electron Tomography in Materials Science. <i>Springer Handbooks</i> , 2019 , 1279-1329	1.3	6
129	Adatom dynamics and the surface reconstruction of Si(110) revealed using time-resolved electron microscopy. <i>Applied Physics Letters</i> , 2018 , 113, 183104	3.4	6
128	Low-Dose Scanning Electron Diffraction Microscopy of Mechanochemically Nanostructured Pharmaceuticals. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1746-1747	0.5	5
127	Diketopyrrolopyrrole pigment core@multi-layer SiO2 shell with improved photochemical stability. <i>Dyes and Pigments</i> , 2018 , 156, 108-115	4.6	5
126	STEM Tomography 2011 , 353-392		5
125	Electron tomography of III-V quantum dots using dark field 002 imaging conditions. <i>Journal of Microscopy</i> , 2010 , 237, 148-54	1.9	5
124	Nanostructural characterization and catalytic analysis of hybridized platinum/phthalocyanine nanocomposites. <i>Microscopy (Oxford, England)</i> , 2009 , 58, 289-94	1.3	5
123	AsAs dimerization, Fermi surfaces and the anomalous electrical transport properties of UAsSe and ThAsSe. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 2190-2198	3.3	5
122	{110} twinning in YBa2Cu3O7-x. <i>Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties</i> , 1992 , 66, 237-256		5
121	Density-based clustering of crystal (mis)orientations and the Python library. <i>Journal of Applied Crystallography</i> , 2020 , 53, 1293-1298	3.8	5
120	Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors. <i>Nature Communications</i> , 2021 , 12, 6519	17.4	5
119	A new route to porous metal@rganic framework crystal@lass composites. <i>Chemical Science</i> , 2020 , 11, 9910-9918	9.4	5
118	Entropic Comparison of Atomic-Resolution Electron Tomography of Crystals and Amorphous Materials. <i>Physical Review Letters</i> , 2017 , 119, 166101	7.4	4
117	Electron Tomography 2016 , 343-376		4
116	Site-selective dopant profiling of p-n junction specimens in the dual-beam FIB/SEM system. <i>Journal of Physics: Conference Series</i> , 2010 , 209, 012069	0.3	4
115	Quantitative HAADF-STEM tomography of unsupported intermetallic Ga-Pd catalysts. <i>Journal of Physics: Conference Series</i> , 2012 , 371, 012024	0.3	4
114	Examining the Possibilities and Pitfalls of Three Dimensional Energy Filtered Transmission Electron Microscopy (3D-EFTEM). <i>Microscopy and Microanalysis</i> , 2003 , 9, 148-149	0.5	4

(2019-2004)

113	STEM Electron Tomography for Nanoscale Materials Science. <i>Microscopy and Microanalysis</i> , 2004 , 10, 148-149	0.5	4
112	An Ultra-High-Tilt Two-Contact Electrical Biasing Specimen Holder for Electron Holography and Electron Tomography of Semiconductor Devices. <i>Microscopy and Microanalysis</i> , 2004 , 10, 1012-1013	0.5	4
111	Microstructural and mechanical characterisation of a second generation hybrid metal extrusion & bonding aluminium-steel butt joint. <i>Materials Characterization</i> , 2021 , 173, 110761	3.9	4
110	Field Response of Magnetic Vortices in Dusty Olivine From the Semarkona Chondrite. <i>Geochemistry, Geophysics, Geosystems</i> , 2019 , 20, 1441-1453	3.6	3
109	The Microstructure of Pharmaceutical Materials Revealed by Scanning Electron Diffraction. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1192-1193	0.5	3
108	Nanoscale Strain Tomography by Scanning Precession Electron Diffraction. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1710-1711	0.5	3
107	The absence of charge-density-wave sliding in epitaxial charge-ordered Pr(0.48)Ca(0.52)MnO(3) films. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 275602	1.8	3
106	Electron Tomography 2012 , 253-279		3
105	Nano-metrology of platinum-ruthenium bimetallic catalysts and the cluster-to-crystal transformation. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 207-210	0.3	3
104	Simulations of the electrostatic potential in a thin silicon specimen containing a p-n junction. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 839, 60		3
103	Probing the Spatial Distribution and Morphology of Supported Nanoparticles Using Rutherford-Scattered Electron Imaging. <i>Angewandte Chemie</i> , 2002 , 114, 3958-3961	3.6	3
102	Three Dimensional Energy Filtered Transmission Electron Microscopy (3D-EFTEM). <i>Microscopy and Microanalysis</i> , 2001 , 7, 1162-1163	0.5	3
101	Comment on "Flux Quantization in Magnetic Nanowires Imaged by Electron Holography". <i>Physical Review Letters</i> , 1996 , 77, 977	7.4	3
100	Scanning electron diffraction tomography of strain. <i>Inverse Problems</i> , 2021 , 37, 015003	2.3	3
99	APPLICATIONS OF ELECTRON TOMOGRAPHY 2008 , 335-372		3
98	A New Method for Determining the Composition of CoreBhell Nanoparticles via Dual-EDX+EELS Spectrum Imaging. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 749-755	3.1	3
97	Catalysts: Stabilization of Single Metal Atoms on Graphitic Carbon Nitride (Adv. Funct. Mater. 8/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	2
96	Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction. <i>Nano Research</i> , 2019 , 12, 939-946	10	2

95	Electron Ptychography Using Fast Binary 4D STEM Data. Microscopy and Microanalysis, 2019, 25, 1662-16	563;	2
94	Mapping Non-Crystalline Nanostructure in Beam Sensitive Systems With Low-dose Scanning Electron Pair Distribution Function Analysis. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1636-1637	0.5	2
93	Microstructural analysis of Au/TiO2-SBA-15 nanocomposite. <i>Microscopy and Microanalysis</i> , 2014 , 20, 100	1b.z	2
92	Data Clustering and Scanning Precession Electron Diffraction for Microanalysis. <i>Microscopy and Microanalysis</i> , 2017 , 23, 116-117	0.5	2
91	Multi-Dimensional Multi-Functional Catalytic Architecture: A Selectively Functionalized Three-Dimensional Hierarchically Ordered Macro/Mesoporous Network for Cascade Reactions Analyzed by Electron Tomography. <i>Microscopy and Microanalysis</i> , 2017 , 23, 2042-2043	0.5	2
90	Plasmon and compositional mapping of plasmonic nanostructures 2014 ,		2
89	Cs corrected STEM EELS: Analysing beam sensitive carbon nanomaterials in cellular structures. <i>Ultramicroscopy</i> , 2010 , 110, 946-51	3.1	2
88	Comparison of the ferromagnetic phase transitions in La0.7Ca0.3MnO3 and single crystal nickel by micromagnetic imaging. <i>Philosophical Magazine</i> , 2006 , 86, 2941-2956	1.6	2
87	Nitrogen in highly crystalline carbon nanotubes. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 199-202	0.3	2
86	Z-contrast HAADF-STEM Tomography. <i>Microscopy and Microanalysis</i> , 2003 , 9, 178-179	0.5	2
85	High-Performance Nanocatalysts for Single-Step Hydrogenations. ChemInform, 2003, 34, no		2
84	Tomography Using the Transmission Electron Microscope 2005 , 601-627		2
83	Image-Spectroscopy: New Developments and Applications. <i>Microscopy and Microanalysis</i> , 1999 , 5, 618-6	19 5	2
82	6D electron microscopy: combining real-space and reciprocal-space tomography. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2014 , 70, C368-C368	1.7	2
81	Microscopy of Semiconducting Materials 2003		2
80	Magnetic Vortex States in Toroidal Iron Oxide Nanoparticles: Combining Micromagnetics with Tomography. <i>Nano Letters</i> , 2020 , 20, 7405-7412	11.5	2
79	Scanning Electron Diffraction © Trystal Mapping at the Nanoscale. <i>Microscopy and Microanalysis</i> , 2018 , 24, 182-183	0.5	2
78	Factors Governing the Chemical Stability of Shear-Exfoliated ZnSe(alkylamine) IIIVI Layered Hybrids. <i>Chemistry of Materials</i> , 2020 , 32, 2379-2388	9.6	1

77	EFTEM 2016 , 377-404		1
76	A Compressive Sensing based acquisition design for quantitative ultra-low dose high-resolution imaging and spectroscopy in the STEM 2016 , 324-325		1
75	Quantitative Electron Tomography of Rubber Composites. <i>Journal of Physics: Conference Series</i> , 2014 , 522, 012042	0.3	1
74	Inter-phase Relationships Revealed in 3-Dimensional Orientation Spaces. <i>Microscopy and Microanalysis</i> , 2017 , 23, 202-203	0.5	1
73	Local Layer Stacking and Structural Disorder in Graphene Oxide Studied via Scanning Electron Diffraction <i>Microscopy and Microanalysis</i> , 2017 , 23, 1754-1755	0.5	1
72	Aberration-corrected and energy-filtered precession electron diffraction. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2013 , 228, 43-50	1	1
71	Obstacles and optimisation in weak-beam dark-field tomography of defects. <i>Journal of Physics: Conference Series</i> , 2010 , 241, 012007	0.3	1
70	Reconstruction strategies for structure solution using precession electron diffraction data from hybrid inorganic-organic framework materials. <i>Journal of Physics: Conference Series</i> , 2010 , 241, 012025	0.3	1
69	3D characterization and metrology of nanostructures by electron tomography. <i>Microscopy and Microanalysis</i> , 2008 , 14, 284-285	0.5	1
68	3-D Analysis of Nanomaterials using Electron Tomography. <i>Microscopy and Microanalysis</i> , 2003 , 9, 4-5	0.5	1
67	Energy Filtered Transmission Electron Microscopy (EFTEM) and the use of Image-Spectroscopy. <i>Microscopy and Microanalysis</i> , 2003 , 9, 1574-1575	0.5	1
66	Growth and Overgrowth of Ge/Si Quantum Dots: An Observation by Atomic Resolution HAADF-STEM Imaging. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 832, 221		1
65	The Determination and Interpretation of Electrically Active Charge Density Profiles at Reverse Biased p-n Junctions from Electron Holograms. <i>Microscopy and Microanalysis</i> , 2002 , 8, 42-43	0.5	1
64	High Angle Annular Dark Field (HAADF) STEM Tomography of Nanostructured Catalysts. <i>Microscopy and Microanalysis</i> , 2001 , 7, 1104-1105	0.5	1
63	STEM electron tomography of gold nanostructures 2008 , 311-312		1
62	Chapter 6:Electron Tomography. RSC Nanoscience and Nanotechnology, 2015, 211-299		1
61	Quantitative elemental and bonding EELS tomography of a complex nanoparticle 2016 , 27-28		1
60	Improved Data Analysis and Reconstruction Methods for STEM-EDX Tomography. <i>Microscopy and Microanalysis</i> , 2016 , 22, 284-285	0.5	1

59	Structural changes in FeOx/EAl2O3 catalysts during ethylbenzene dehydrogenation 2016 , 2, 25-32		1
58	All Mixed Up: Using Machine Learning to Address Heterogeneity in (Natural) Materials. <i>Microscopy and Microanalysis</i> , 2018 , 24, 562-563	0.5	1
57	The Microstructure of RR1000 Nickel-Base Superalloy: The FIB-SEM Dual-Beam Approach215-220		1
56	Electron holography of doped semiconductors: when does it work and is it quantitative? 2005 , 203-212		1
55	Unveiling the interaction mechanisms of electron and X-ray radiation with halide perovskite semiconductors using scanning nano-probe diffraction <i>Advanced Materials</i> , 2022 , e2200383	24	1
54	Multi-modal electron tomography for 3D spectroscopic analysis using limited projections 2016 , 9-10		Ο
53	STEM imaging of atom dynamics: novel methods for accurate particle tracking 2016 , 505-506		O
52	Scan Strategies for Electron Energy Loss Spectroscopy at Optical and Vibrational Energies in Perylene Diimide Nanobelts. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1738-1739	0.5	O
51	Multi-Dimensional Machine Learning Aided Analysis of a Nickel-Based Superalloy. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2173-2174	0.5	0
50	Mehrdimensionale Elektronenmikroskopie. <i>Angewandte Chemie</i> , 2014 , 126, 8758-8761	3.6	O
49	Quantitative Examination of Reverse-Biased Semiconductor Devices using Off- Axis Electron Holography. <i>Microscopy and Microanalysis</i> , 2002 , 8, 518-519	0.5	О
48	Multidimensional Electron Diffraction-Microscopy of Cabotegravir Nanocrystals. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1942-1943	0.5	
47	Phase mapping of 2xxx-series aluminium alloys by scanning precession electron diffraction 2016 , 255-2	56	
46	Structure and topology of chemical vapour deposited graphene by scanning electron diffraction 2016 , 474-475		
45	Scanning electron diffraction of polyethylene 2016 , 692-693		
44	SAMFire - a smart adaptive fitting algorithm for multi-dimensional microscopy 2016 , 95-96		
43	Nanoscale Crystal Cartography using Scanning Electron Diffraction 2016 , 613-614		
42	Magnetic microscopy of metallic meteorites: probing the magnetic state of the early solar system 2016 , 1170-1171		

Scanning electron diffraction using the pnCCD (S)TEM Camera **2016**, 641-642

40	Local Coordination in Metal-Organic Frameworks Probed in the Vibrational and Optical Regime by EELS. <i>Microscopy and Microanalysis</i> , 2019 , 25, 606-607	0.5
39	High resolution orientation mapping of secondary phases in ATI 718Plus□ alloy. <i>MATEC Web of Conferences</i> , 2014 , 14, 11002	0.3
38	Enhanced data generated with electrons (EDGE) special issue introduction. <i>Microscopy and Microanalysis</i> , 2014 , 20, 647-8	0.5
37	Scanning Precession Electron Diffraction Study of Hybrid Precipitates in a 6xxx Series Aluminium Alloy. <i>Microscopy and Microanalysis</i> , 2017 , 23, 114-115	0.5
36	Sparsity, Parsimony and Data Reduction - Applications across Multi-Dimensional Electron Microscopy. <i>Microscopy and Microanalysis</i> , 2017 , 23, 112-113	0.5
35	Three-dimensional Surface Charge Reconstructions of Surface Plasmon Modes of Silver Right Bipyramids. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2225-2226	0.5
34	Overcoming Traditional Challenges in Nano-scale X-ray Characterization Using Independent Component Analysis. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1227-1228	0.5
33	Focused Ion Beam Nanotomography of Chondritic Meteorites: Closing the Mesoscale Length Gap in Paleomagnetic Studies. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2261-2262	0.5
32	Decomposing Electron Diffraction Signals in Multi-Component Microstructures. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1241-1242	0.5
31	Poster: Spin-Related Phenomena 2013 , 589-632	
30	Towards Routine Structure Solution using Precession Electron Diffraction. <i>Microscopy and Microanalysis</i> , 2009 , 15, 738-739	0.5
29	Quantitative Imaging of Flux Vortices in Superconductors. <i>Journal of Physics: Conference Series</i> , 2012 , 391, 012117	0.3
28	Structural Variations of BiMnO3+xRevealed by Electron Diffraction. <i>Journal of Physics: Conference Series</i> , 2012 , 371, 012033	0.3
27	Determination of the Nature of the Structural Phase Transitions in 122 Pnictide Systems. <i>Journal of Physics: Conference Series</i> , 2012 , 391, 012134	0.3
26	Developments in Techniques and Algorithms for Materials-Based Electron Tomography. <i>Microscopy and Microanalysis</i> , 2009 , 15, 40-41	0.5
25	Debye-Waller Factor Measurements by Quantitative Convergent Beam Electron Diffraction (CBED). <i>Microscopy and Microanalysis</i> , 1997 , 3, 1011-1012	0.5
24	Quantitative Convergent Beam Electron Diffraction (CBED) Measurements of Low-Order Structure Factors in Nickel. <i>Microscopy and Microanalysis</i> , 1997 , 3, 1013-1014	0.5

Electron tomography using compositional-sensitive diffraction contrast for 3D characterization of 23 0.5 self-assembled semiconductor quantum dots. Microscopy and Microanalysis, 2008, 14, 1052-1053 High Resolution STEM Tomography of Nanomaterials. Microscopy and Microanalysis, 2006, 12, 1548-1549.5 22 Analyzing the 3-D Structural Properties of Quantum Dots. Microscopy and Microanalysis, 2004, 10, 1192-1193 21 Advances in High Resolution Elemental Analysis Using Image-Spectroscopy 2005, 163-168 20 X-Ray Mapping of Bimetallic Catalysts in Mesoporous Silica. *Microscopy and Microanalysis*, 1999, 5, 622-6235 19 Application of High Spatial Resolution Electron Diffraction Techniques to the Study of Local 18 Properties of Crystalline Solids. Materials Research Society Symposia Proceedings, 1994, 332, 129 Towards quantitative electron holography of electrostatic potentials in doped semiconductors 17 2005, 225-228 Three-dimensional analysis of the dopant potential of a silicon p-n junction by holographic 16 tomography **2005**, 229-232 3D Characterisation of the Electrostatic Potential in an Electrically Biased Silicon Device. Springer 0.2 15 Proceedings in Physics, 2008, 379-382 Dopant Profiling in the TEM: Progress Towards Quantitative Electron Holography. Springer 0.2 14 Proceedings in Physics, 2008, 391-394 Advanced Focused Ion Beam Specimen Preparation for Examination by Off-Axis Electron 13 0.2 Holography. Springer Proceedings in Physics, 2008, 441-444 Critical Thickness for Semiconductor Specimens Prepared using Focused Ion Beam Milling. Springer 12 0.2 Proceedings in Physics, 2008, 446-448 Structure solution of intermediate tin oxide, SnO2⋈, by electron precession 2008, 235-236 11 Phase-scrambling[multislice simulations of precession electron diffraction 2008, 237-238 10 Three-dimensional imaging of semiconductor nanostructures by compositional-sensitive diffraction 9 contrast electron tomography studies313-314 Advanced FIB preparation of semiconductor specimens for examination by off-axis electron holography655-656 Precession electron diffraction: application to organic crystals and hybrid inorganic-organic materials 2008, 177-178 Towards a quantitative understanding of precession electron diffraction **2008**, 189-190

- Off-axis electron holography of focused ion beam milled GaAs and Si p-n junctions. *Springer Proceedings in Physics*, **2005**, 221-224
- 0.2

- 4 Coherent electron diffraction and holography **1995**, 277-286
- 3 Crystallographic mapping in engineering alloys by scanning precession electron diffraction **2016**, 211-212
- Time-resolved imaging and analysis of single atom diffusion on graphene oxide **2016**, 447-448
- In situ observation of heat-induced degradation of perovskite solar cells **2016**, 191-192