Amalia Miliou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5658067/publications.pdf

Version: 2024-02-01

304368 360668 1,466 86 22 35 h-index citations g-index papers 86 86 86 1168 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessment of Different Channel Equalization Algorithms for a Converged OFDM-Based 5G mm-wave A-RoF System at 60 GHz. Applied Sciences (Switzerland), 2022, 12, 1511.	1.3	2
2	A 5G Fiber Wireless 4Gb/s WDM Fronthaul for Flexible 360° Coverage in V-Band massive MIMO Small Cells. Journal of Lightwave Technology, 2021, 39, 1081-1088.	2.7	21
3	Broadband 5Gb/s Optical RAM Cell over the C-band. , 2021, , .		4
4	In-Fiber Interferometric-Based Sensors: Overview and Recent Advances. Photonics, 2021, 8, 265.	0.9	51
5	Theory and Sensitivity Optimization of Plasmo-photonic Mach-Zehnder Interferometric Sensors. Journal of Lightwave Technology, 2021, 39, 5206-5217.	2.7	4
6	Reconfigurable Fiber Wireless IFoF Fronthaul With 60 GHz Phased Array Antenna and Silicon Photonic ROADM for 5G mmWave C-RANs. IEEE Journal on Selected Areas in Communications, 2021, 39, 2816-2826.	9.7	19
7	Monolithically Integrated InP Bistable Photonic Waveguide Memory. IEEE Photonics Technology Letters, 2021, 33, 1274-1277.	1.3	5
8	Analog fiber-wireless downlink transmission of IFoF/mmWave over in-field deployed legacy PON infrastructure for 5G fronthauling. Journal of Optical Communications and Networking, 2020, 12, D57.	3.3	27
9	Theoretical and Experimental Analysis of Burst-Mode Wavelength Conversion via a Differentially-Biased SOA-MZI. Journal of Lightwave Technology, 2020, 38, 4607-4617.	2.7	10
10	Linearity Measurements on a 5G mmWave Fiber Wireless IFoF Fronthaul Link With Analog RF Beamforming and 120° Degrees Steering. IEEE Communications Letters, 2020, 24, 2839-2843.	2.5	16
11	Multi-User V-Band Uplink Using a Massive MIMO Antenna and a Fiber-Wireless IFoF Fronthaul for 5G mmWave Small-Cells. Journal of Lightwave Technology, 2020, 38, 5368-5374.	2.7	19
12	A Deeply Saturated Differentially-Biased SOA-MZI for 20 Gb/s Burst-Mode NRZ Traffic. Applied Sciences (Switzerland), 2019, 9, 2971.	1.3	0
13	A 5G C-RAN Optical Fronthaul Architecture for Hotspot Areas Using OFDM-Based Analog IFoF Waveforms. Applied Sciences (Switzerland), 2019, 9, 4059.	1.3	24
14	Scaling the Sensitivity of Integrated Plasmo-Photonic Interferometric Sensors. ACS Photonics, 2019, 6, 1664-1673.	3.2	21
15	Multi-user IFoF uplink transmission over a 32-element 60GHz phased array antenna enabling both Frequency and Spatial Division Multiplexing. , 2019, , .		6
16	Fiber Wireless A-RoF/IFoF Uplink of 0.4Gb/s 16-QAM and 0.6Gb/s QPSK Over a 32-Element 60GHz Phased Array Antenna for 5G Fronthaul Networks. , 2019, , .		4
17	Optics in Computing: From Photonic Network-on-Chip to Chip-to-Chip Interconnects and Disintegrated Architectures. Journal of Lightwave Technology, 2019, 37, 363-379.	2.7	87
18	Design and Optimization of Open-cladded Plasmonic Waveguides for CMOS Integration on Si3N4 Platform. Plasmonics, 2019, 14, 823-838.	1.8	7

#	Article	IF	Citations
19	Digital all-optical Physical-layer Network Coding for 2Gbaud DQPSK signals in mm-wave radio-over-fiber networks. Optical Switching and Networking, 2019, 33, 199-207.	1.2	4
20	10  Gb/s optical random access memory (RAM) cell. Optics Letters, 2019, 44, 1821.	1.7	34
21	On-Chip SOI Delay Line Bank for Optical Buffers and Time Slot Interchangers. IEEE Photonics Technology Letters, 2018, 30, 31-34.	1.3	24
22	Multicast-Enabling Optical Switch Design Employing Si Buffering and Routing Elements. IEEE Photonics Technology Letters, 2018, 30, 712-715.	1.3	19
23	Digital All-Optical Physical-Layer Network Coding. , 2018, , .		0
24	Earthquake Tolerant Energy Aware Algorithms: A New Approach to the Design of WDM Backbone Networks. IEEE Transactions on Green Communications and Networking, 2018, 2, 1164-1173.	3.5	4
25	Optically-Enabled Bloom Filter Label Forwarding Using a Silicon Photonic Switching Matrix. Journal of Lightwave Technology, 2017, 35, 4758-4765.	2.7	5
26	Integrated Optical Content Addressable Memories (CAM) and Optical Random Access Memories (RAM) for Ultra-Fast Address Look-Up Operations. Applied Sciences (Switzerland), 2017, 7, 700.	1.3	15
27	Digital Optical Physical-Layer Network Coding for mm-Wave Radio-Over-Fiber Signals in Fiber-Wireless Networks. Journal of Lightwave Technology, 2016, 34, 4765-4771.	2.7	8
28	Ultra-compact IIIâ€'V-on-Si photonic crystal memory for flip-flop operation at 5 Gb/s. Optics Express, 2016, 24, 4270.	1.7	21
29	Optical Physical-Layer Digital Network Coding for 2.5-Gb/s RoF-Based FiWi Networks. IEEE Photonics Technology Letters, 2016, 28, 1442-1445.	1.3	5
30	Optical interconnect and memory technologies for next generation computing. , 2016, , .		2
31	III–V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 295-304.	1.9	38
32	All-Optical Digital Network Coding for Very High-Throughput mm-wave Fiber-Wireless Networks. , 2016, , .		1
33	Semiconductor Optical Amplifier (SOA)–Based Amplification of Intensity-Modulated Optical Pulses — Deterministic Timing Jitter and Pulse Peak Power Equalization Analysis. , 2015, , .		1
34	WDM-enabled optical RAM and optical cache memory architectures for Chip Multiprocessors., 2015,,.		4
35	Optical RAM row access using WDM-enabled all-passive row/column decoders. Proceedings of SPIE, 2014, , .	0.8	0
36	A WDM RoF system for heterogeneous 5 GHz/60 GHz wireless applications in MTMAC-enabled networks. , 2014, , .		0

#	Article	IF	CITATIONS
37	XPM- and XGM-Based Optical RAM Memories: Frequency and Time Domain Theoretical Analysis. IEEE Journal of Quantum Electronics, 2014, 50, 1-15.	1.0	26
38	Optical RAM Row Access With WDM-Enabled All-Passive Row/Column Decoders. IEEE Photonics Technology Letters, 2014, 26, 671-674.	1.3	5
39	System level evaluation of optical RAM circuits based on cross coupled SOAs and SOA-MZIs in the time and frequency domain. , $2014, $, .		1
40	Frequency and time domain analysis of all optical memories based on SOA and SOA-MZI switches. , 2014, , .		2
41	Heterogeneous 60 GHz $\!\!\!/$ 5 GHz broadband optical wireless systems supporting dynamic bandwidth allocation. , 2014, , .		1
42	Nonlinear FDTD method for the simulation of the optical effects in silicon waveguides. , 2013, , .		1
43	WDM-enabled optical RAM architectures for ultra-fast, low-power optical cache memories. , 2013, , .		3
44	Bringing WDM Into Optical Static RAM Architectures. Journal of Lightwave Technology, 2013, 31, 988-995.	2.7	30
45	Bridging the HASM: An OWL ontology for modeling the information pathways in haptic interfaces software. Expert Systems With Applications, 2013, 40, 1358-1371.	4.4	16
46	Memory Speed Analysis of an Optical Flip-Flop Employing a SOA-MZI and a Feedback Loop. IEEE Journal of Quantum Electronics, 2013, 49, 169-178.	1.0	9
47	Optical Cache Memory Peripheral Circuitry: Row and Column Address Selectors for Optical Static RAM Banks. Journal of Lightwave Technology, 2013, 31, 4098-4110.	2.7	28
48	Column Address Selection in Optical RAMs With Positive and Negative Logic Row Access. IEEE Photonics Journal, 2013, 5, 7800410-7800410.	1.0	18
49	Multi-wavelength access gate for WDM-formatted words in optical RAM row architectures. Proceedings of SPIE, 2013, , .	0.8	5
50	Optical RAM Row Access and Column Decoding for WDM-formatted optical words. , 2013, , .		7
51	Design of a Tactile Display Based on a High Power CMUT Array. , 2012, , .		O
52	Design and simulation of a tactile display based on a CMUT array. International Journal of Electronics, 2012, 99, 1351-1363.	0.9	1
53	Deterministic Timing Jitter Analysis of SOA-Amplified Intensity-Modulated Optical Pulses. IEEE Photonics Journal, 2012, 4, 1947-1955.	1.0	6
54	All Optical Flip Flop with two Coupled Travelling Waveguide SOA-XGM Switches. , 2012, , .		10

#	Article	IF	Citations
55	Dual-Wavelength Bit Input Optical RAM With Three SOA-XGM Switches. IEEE Photonics Technology Letters, 2012, 24, 1142-1144.	1.3	17
56	Optical RAM and Flip-Flops Using Bit-Input Wavelength Diversity and SOA-XGM Switches. Journal of Lightwave Technology, 2012, 30, 3003-3009.	2.7	37
57	All-Optical T-Flip-Flop Using a Single SOA-MZI-Based Latching Element. IEEE Photonics Technology Letters, 2012, 24, 748-750.	1.3	25
58	Memory Speed Analysis of Optical RAM and Optical Flip-Flop Circuits Based on Coupled SOA-MZI Gates. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1006-1015.	1.9	39
59	Optical RAM cell with Dual-Wavelength Bit Input and three SOA XGM switches. , 2012, , .		4
60	All-optical 3-bit counter using two cascaded stages of SOA-MZI-based T-flip-flops. , 2011, , .		10
61	40 Gb/s NRZ Wavelength Conversion Using a Differentially-Biased SOA-MZI: Theory and Experiment. Journal of Lightwave Technology, 2011, 29, 1489-1499.	2.7	44
62	A 320 Gb/s-Throughput Capable 2\$,imes,\$2 Silicon-Plasmonic Router Architecture for Optical Interconnects. Journal of Lightwave Technology, 2011, 29, 3185-3195.	2.7	52
63	SOA-MZI-Based Nonlinear Optical Signal Processing: A Frequency Domain Transfer Function for Wavelength Conversion, Clock Recovery, and Packet Envelope Detection. IEEE Journal of Quantum Electronics, 2011, 47, 40-49.	1.0	50
64	Tb/s switching fabrics for optical interconnects using heterointegration of plasmonics and silicon photonics: The FP7 PLATON approach. , 2010 , , .		7
65	Ontological representation of tactile information for software development. Applied Ontology, 2009, 4, 139-167.	1.0	6
66	The nonlinear current behaviour of a driven R–L-Varactor in the low frequency range. Nonlinear Analysis: Real World Applications, 2009, 10, 691-701.	0.9	3
67	Dynamics of the solution of Bratu's equation. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, e672-e678.	0.6	19
68	Nonlinear electronic circuit, Part I: Multiple routes to chaos. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, e3-e20.	0.6	8
69	Nonlinear electronic circuit, Part II: synchronization in a chaotic MODEM scheme. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, e21-e31.	0.6	10
70	Desynchronization crisis induced intermittency in a master–slave PLL configuration. Chaos, Solitons and Fractals, 2009, 42, 33-39.	2.5	5
71	Tactile displays: Overview and recent advances. Displays, 2008, 29, 185-194.	2.0	158
72	Internal crisis in a second-order non-linear non-autonomous electronic oscillator. Chaos, Solitons and Fractals, 2008, 36, 1055-1061.	2.5	4

#	Article	IF	Citations
73	The intermittent behavior of a second-order non-linear non-autonomous oscillator. Chaos, Solitons and Fractals, 2008, 36, 1191-1199.	2.5	5
74	The relaxed Newton method derivative: Its dynamics and non-linear properties. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68, 1868-1873.	0.6	0
75	THE INTERMITTENCY ROUTE TO CHAOS OF AN ELECTRONIC DIGITAL OSCILLATOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 1561-1566.	0.7	26
76	Characterization of a non-autonomous second-order non-linear circuit for secure data transmission. Chaos, Solitons and Fractals, 2007, 33, 1248-1255.	2.5	12
77	Crisis induced intermittency in a fourth-order autonomous electric circuit. Chaos, Solitons and Fractals, 2007, 33, 1256-1262.	2.5	12
78	Secure communication by chaotic synchronization: Robustness under noisy conditions. Nonlinear Analysis: Real World Applications, 2007, 8, 1003-1012.	0.9	65
79	A novel optically controlled wavelength conversion circuit for WDM star networks. Optics Communications, 2005, 247, 85-91.	1.0	1
80	Designing an all-optical packet filtering module for WDM broadcast-and-select star networks. Optics and Laser Technology, 2000, 32, 317-321.	2.2	3
81	OCON: an optically controlled optical network. Computer Communications, 1999, 22, 811-824.	3.1	4
82	A 1.3 mu m directional coupler polarization splitter by ion exchange. Journal of Lightwave Technology, 1993, 11, 220-225.	2.7	54
83	15-dB amplification at 1.06 mu m in ion-exchanged silicate glass waveguides. IEEE Photonics Technology Letters, 1993, 5, 416-418.	1.3	8
84	Multikilohertz all-optical modulator in semiconductor doped glass channel waveguide. Electronics Letters, 1993, 29, 1246.	0.5	3
85	Modeling of the index change in K^+–Na^+ ion-exchanged glass. Applied Optics, 1991, 30, 674.	2.1	41
86	Fiber-compatible K/sup +/-Na/sup +/ ion-exchanged channel waveguides: fabrication and characterization. IEEE Journal of Quantum Electronics, 1989, 25, 1889-1897.	1.0	53