Henrique Sawakuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5657686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anuran fauna of the Parque Estadual Carlos Botelho - Núcleo Sete Barras, southeastern Brazil: species composition, use of breeding sites, and seasonal patterns of breeding activity. Biota Neotropica, 2021, 21, .	0.2	2
2	CO2 partial pressure and fluxes in the Amazon River plume using in situ and remote sensing data. Continental Shelf Research, 2021, 215, 104348.	0.9	14
3	Carbon and Beyond: The Biogeochemistry of Climate in a Rapidly Changing Amazon. Frontiers in Forests and Global Change, 2021, 4, .	1.0	21
4	Water influence on CH4 and CO2 generation from tar sandstones: Insights from incubation experiments in the Pirambóia Formation, Paraná Basin. Journal of South American Earth Sciences, 2021, 106, 103097.	0.6	3
5	Low Diffusive Methane Emissions From the Main Channel of a Large Amazonian Run-of-the-River Reservoir Attributed to High Methane Oxidation. Frontiers in Environmental Science, 2021, 9, .	1.5	6
6	How green can Amazon hydropower be? Net carbon emission from the largest hydropower plant in Amazonia. Science Advances, 2021, 7, .	4.7	18
7	Diel Variability of CO ₂ Emissions From Northern Lakes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006246.	1.3	14
8	Negligible Quantities of Particulate Lowâ€Temperature Pyrogenic Carbon Reach the Atlantic Ocean via the Amazon River. Global Biogeochemical Cycles, 2021, 35, e2021GB006990.	1.9	7
9	Phosphorus Regulation of Methane Oxidation in Water From Iceâ€Covered Lakes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006190.	1.3	8
10	Methane in Lakes: Variability in Stable Carbon Isotopic Composition and the Potential Importance of Groundwater Input. Frontiers in Earth Science, 2021, 9, .	0.8	10
11	Incubation experiments to constrain the production of methane and carbon dioxide in organic-rich shales of the Permian Irati Formation, Paraná Basin. Marine and Petroleum Geology, 2020, 112, 104039.	1.5	4
12	Diel variability of methane emissions from lakes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21488-21494.	3.3	50
13	Pathways for Methane Emissions and Oxidation that Influence the Net Carbon Balance of a Subtropical Cypress Swamp. Frontiers in Earth Science, 2020, 8, .	0.8	9
14	Carbon dioxide (CO ₂) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia. Biogeosciences, 2019, 16, 3527-3542.	1.3	13
15	Enhanced Aquatic Respiration Associated With Mixing of Clearwater Tributary and Turbid Amazon River Waters. Frontiers in Earth Science, 2019, 7, .	0.8	17
16	Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sensing of Environment, 2019, 224, 104-118.	4.6	195
17	Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin. Earth and Planetary Science Letters, 2018, 492, 152-162.	1.8	55
18	Velocityâ€amplified microbial respiration rates in the lower Amazon River. Limnology and Oceanography Letters, 2018, 3, 265-274.	1.6	31

Henrique Sawakuchi

#	Article	IF	CITATIONS
19	Lipoxygenase-induced autoxidative degradation of terrestrial particulate organic matter in estuaries: A widespread process enhanced at high and low latitude. Organic Geochemistry, 2018, 115, 78-92.	0.9	22
20	<scp>ATLANTIC AMPHIBIANS</scp> : a data set of amphibian communities from the Atlantic Forests of South America. Ecology, 2018, 99, 1692-1692.	1.5	22
21	Using CDOM optical properties for estimating DOC concentrations and pCO ₂ in the Lower Amazon River. Optics Express, 2018, 26, A657.	1.7	35
22	The Amazon River's Ecosystem: Where Land Meets the Sea. Eos, 2018, 99, .	0.1	6
23	Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: The role of protected areas in the maintenance of native vegetation. Journal of Environmental Management, 2017, 187, 16-23.	3.8	25
24	Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum. Frontiers in Marine Science, 2017, 4, .	1.2	197
25	Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance. Frontiers in Marine Science, 2017, 4, .	1.2	15
26	The Fate of Carbon in Sediments of the Xingu and Tapajós Clearwater Rivers, Eastern Amazon. Frontiers in Marine Science, 2017, 4, .	1.2	18
27	Carbon Dioxide Emissions along the Lower Amazon River. Frontiers in Marine Science, 2017, 4, .	1.2	100
28	Bacterial Biogeography across the Amazon River-Ocean Continuum. Frontiers in Microbiology, 2017, 8, 882.	1.5	75
29	Oxidative mitigation of aquatic methane emissions in large Amazonian rivers. Global Change Biology, 2016, 22, 1075-1085.	4.2	61
30	The reactivity of plantâ€derived organic matter and the potential importance of priming effects along the lower Amazon River. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1522-1539.	1.3	94
31	Origin, transport and deposition of leaf-wax biomarkers in the Amazon Basin and the adjacent Atlantic. Geochimica Et Cosmochimica Acta, 2016, 192, 149-165.	1.6	40
32	Biogenic methane and carbon dioxide generation in organic-rich shales from southeastern Brazil. International Journal of Coal Geology, 2016, 162, 1-13.	1.9	13
33	Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs. Environmental Research Letters, 2015, 10, 124019.	2.2	65
34	The compositional evolution of dissolved and particulate organic matter along the lower Amazon River—Óbidos to the ocean. Marine Chemistry, 2015, 177, 244-256.	0.9	73
35	Methane and Carbon Dioxide Dynamics in the Paraguay River Floodplain (Pantanal) in Episodic Anoxia Events. Handbook of Environmental Chemistry, 2015, , 163-178.	0.2	6
36	Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Global Change Biology, 2014, 20, 2829-2840.	4.2	110

#	Article	IF	CITATIONS
37	The Role of Physical and Political Factors on the Conservation of Native Vegetation in the Brazilian Forest-Savanna Ecotone. Open Journal of Forestry, 2013, 03, 49-56.	0.1	3
38	Species composition and similarities among anuran assemblages of forest sites in southeastern Brazil. Scientia Agricola, 2007, 64, 364-374.	0.6	41
39	The Volta Grande do Xingu: reconstruction of past environments and forecasting of future scenarios of a unique Amazonian fluvial landscape. Scientific Drilling, 0, 20, 21-32.	1.0	30