
Martina Olivero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5657495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating Extracellular Vesicles Contain Liver-Derived RNA Species as Indicators of Severe Cholestasis-Induced Early Liver Fibrosis in Mice. Antioxidants and Redox Signaling, 2022, 36, 480-504.	2.5	9
2	Factor VIII as a potential player in cancer pathophysiology. Journal of Thrombosis and Haemostasis, 2022, 20, 648-660.	1.9	4
3	Ovarian Cancer Cells in Ascites Form Aggregates That Display a Hybrid Epithelial-Mesenchymal Phenotype and Allows Survival and Proliferation of Metastasizing Cells. International Journal of Molecular Sciences, 2022, 23, 833.	1.8	14
4	Early stability and late random tumor progression of a HER2-positive primary breast cancer patient-derived xenograft. Scientific Reports, 2021, 11, 1563.	1.6	6
5	Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining. Npj Systems Biology and Applications, 2021, 7, 1.	1.4	53
6	Different miRNA Profiles in Plasma Derived Small and Large Extracellular Vesicles from Patients with Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 2737.	1.8	44
7	Frequent mutations of FBXO11 highlight BCL6 as a therapeutic target in Burkitt lymphoma. Blood Advances, 2021, 5, 5239-5257.	2.5	7
8	PIK3R1W624R Is an Actionable Mutation in High Grade Serous Ovarian Carcinoma. Cells, 2020, 9, 442.	1.8	7
9	RNA-Seq profiling in peripheral blood mononuclear cells of amyotrophic lateral sclerosis patients and controls. Scientific Data, 2019, 6, 190006.	2.4	22
10	rCASC: reproducible classification analysis of single-cell sequencing data. GigaScience, 2019, 8, .	3.3	26
11	Extracellular Vesicles Mediate Mesenchymal Stromal Cell-Dependent Regulation of B Cell PI3K-AKT Signaling Pathway and Actin Cytoskeleton. Frontiers in Immunology, 2019, 10, 446.	2.2	73
12	Long non-coding and coding RNAs characterization in Peripheral Blood Mononuclear Cells and Spinal Cord from Amyotrophic Lateral Sclerosis patients. Scientific Reports, 2018, 8, 2378.	1.6	74
13	Reproducible bioinformatics project: a community for reproducible bioinformatics analysis pipelines. BMC Bioinformatics, 2018, 19, 349.	1.2	49
14	Heat-shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF. Molecular Oncology, 2017, 11, 599-611.	2.1	32
15	The integrin-linked kinase-associated phosphatase (ILKAP) is a regulatory hub of ovarian cancer cell susceptibility to platinum drugs. European Journal of Cancer, 2016, 60, 59-68.	1.3	10
16	Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism. Oncotarget, 2016, 7, 712-728.	0.8	13
17	Xenopatients show the need for precision medicine approach to chemotherapy in ovarian cancer. Oncotarget, 2016, 7, 26181-26191.	0.8	15
18	TOP2A gene copy gain predicts response of epithelial ovarian cancers to pegylated liposomal doxorubicin. Gynecologic Oncology, 2015, 138, 627-633.	0.6	43

MARTINA OLIVERO

#	Article	IF	CITATIONS
19	Heat Shock Protein 27 (HSP27, HSPB1) Is Up-Regulated by Targeted Agents and Confers Resistance to Both Targeted Drugs and Chemotherapeutics. Heat Shock Proteins, 2015, , 17-25.	0.2	1
20	HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor. International Journal of Cancer, 2014, 134, 1289-1299.	2.3	44
21	PIM2 Kinase Is Induced by Cisplatin in Ovarian Cancer Cells and Limits Drug Efficacy. Journal of Proteome Research, 2014, 13, 4970-4982.	1.8	22
22	Heatâ€shock protein 27 (HSP27, HSPB1) is upâ€regulated by MET kinase inhibitors and confers resistance to METâ€targeted therapy. FASEB Journal, 2014, 28, 4055-4067.	0.2	34
23	The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase. Oncotarget, 2014, 5, 5992-6002.	0.8	17
24	IRF-1 expression is induced by cisplatin in ovarian cancer cells and limits drug effectiveness. European Journal of Cancer, 2013, 49, 964-973.	1.3	29
25	AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells. Experimental Cell Research, 2013, 319, 2627-2636.	1.2	21
26	The cellular apoptosis susceptibility <i>CAS/CSE1L</i> gene protects ovarian cancer cells from death by suppressing RASSF1C. FASEB Journal, 2012, 26, 2446-2456.	0.2	34
27	Cells Lacking the Fumarase Tumor Suppressor Are Protected from Apoptosis through a Hypoxia-Inducible Factor-Independent, AMPK-Dependent Mechanism. Molecular and Cellular Biology, 2012, 32, 3081-3094.	1.1	29
28	The <i>MET</i> oncogene transforms human primary bone-derived cells into osteosarcomas by targeting committed osteo-progenitors. Journal of Bone and Mineral Research, 2012, 27, 1322-1334.	3.1	27
29	Fumarase tumor suppressor gene and MET oncogene cooperate in upholding transformation and tumorigenesis. FASEB Journal, 2010, 24, 2680-2688.	0.2	12
30	<i>met</i> oncogene activation qualifies spontaneous canine osteosarcoma as a suitable preâ€clinical model of human osteosarcoma. Journal of Pathology, 2009, 218, 399-408.	2.1	34
31	A cancerâ€predisposing "hot spot―mutation of the fumarase gene creates a dominant negative protein. International Journal of Cancer, 2008, 122, 947-951.	2.3	20
32	A Mouse Model of Pulmonary Metastasis from Spontaneous Osteosarcoma Monitored In Vivo by Luciferase Imaging. PLoS ONE, 2008, 3, e1828.	1.1	38
33	Caveolin-1 Reduces Osteosarcoma Metastases by Inhibiting c-Src Activity and Met Signaling. Cancer Research, 2007, 67, 7675-7685.	0.4	81
34	The Therapeutic Potential of Hepatocyte Growth Factor to Sensitize Ovarian Cancer Cells to Cisplatin and Paclitaxel In vivo. Clinical Cancer Research, 2007, 13, 2191-2198.	3.2	29
35	MET Overexpression Turns Human Primary Osteoblasts into Osteosarcomas. Cancer Research, 2006, 66, 4750-4757.	0.4	123
36	Genes regulated by hepatocyte growth factor as targets to sensitize ovarian cancer cells to cisplatin. Molecular Cancer Therapeutics, 2006, 5, 1126-1135.	1.9	27

MARTINA OLIVERO

#	Article	IF	CITATIONS
37	Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. Cancer Research, 2005, 65, 907-12.	0.4	72
38	Truncated RON Tyrosine Kinase Drives Tumor Cell Progression and Abrogates Cell-Cell Adhesion Through E-Cadherin Transcriptional Repression. Cancer Research, 2004, 64, 5154-5161.	0.4	96
39	Molecular Analysis of the GNAS1 Gene for the Correct Diagnosis of Albright Hereditary Osteodystrophy and Pseudohypoparathyroidism. Pediatric Research, 2003, 53, 749-755.	1.1	57
40	Amplification of repeat-containing transcribed sequences (ARTS): a transcriptome fingerprinting strategy to detect functionally relevant microsatellite mutations in cancer. Nucleic Acids Research, 2003, 31, 33e-33.	6.5	14
41	Deletion in a (T)8 microsatellite abrogates expression regulation by 3'-UTR. Nucleic Acids Research, 2003, 31, 6561-6569.	6.5	30
42	Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. Cancer Research, 2002, 62, 7025-30.	0.4	92
43	MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. Journal of Cellular Physiology, 2001, 189, 285-290.	2.0	46
44	Staging of head and neck squamous cell carcinoma using theMET oncogene product as marker of tumor cells in lymph node metastases. International Journal of Cancer, 2000, 89, 286-292.	2.3	59
45	The expression ofMet/hepatocyte growth factor receptor gene in giant cell tumors of bone and other benign musculoskeletal tumors. Journal of Cellular Physiology, 2000, 184, 191-196.	2.0	15
46	Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene, 2000, 19, 1547-1555.	2.6	314
47	Expression of Hepatocyte Growth Factor (HGF) and its Receptor (MET) in Medullary Carcinoma of the Thyroid. Endocrine Pathology, 2000, 11, 19-30.	5.2	72
48	Novel mutation in the ATP-binding site of theMET oncogene tyrosine kinase in a HPRCC family. , 1999, 82, 640-643.		82
49	Detection ofMET oncogene/hepatocyte growth factor receptor in lymph node metastases from head and neck squamous cell carcinomas. European Archives of Oto-Rhino-Laryngology, 1997, 254, S138-S143.	0.8	42
50	Control of invasive growth by the HGF receptor family. Journal of Cellular Physiology, 1997, 173, 183-186.	2.0	35
51	Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. British Journal of Cancer, 1996, 74, 1862-1868.	2.9	191
52	Overexpression of the met/HGF receptor in renal cell carcinomas. , 1996, 69, 212-217.		127
53	Overexpression of the C-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. Journal of Endocrinological Investigation, 1995, 18, 134-139.	1.8	63
54	Overexpression of theMET/HGF receptor in ovarian cancer. International Journal of Cancer, 1994, 58, 658-662.	2.3	208

#	Article	IF	CITATIONS
55	Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth Journal of Cell Biology, 1992, 119, 629-641.	2.3	1,282