Sandro Matosevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/56572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting natural killer cells in cancer immunotherapy. , 2022, , 63-82.		1
2	Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Frontiers in Immunology, 2022, 13, 823618.	4.8	105
3	Rora Regulates Neutrophil Migration and Activation in Zebrafish. Frontiers in Immunology, 2022, 13, 756034.	4.8	5
4	Functional expression of CD73 on human natural killer cells. Cancer Immunology, Immunotherapy, 2022, 71, 3043-3056.	4.2	8
5	Immunometabolic targeting of NK cells to solid tumors. , 2021, , 349-368.		0
6	Chemokine networks modulating natural killer cell trafficking to solid tumors. Cytokine and Growth Factor Reviews, 2021, 59, 36-45.	7.2	43
7	Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy. BioDrugs, 2021, 35, 529-545.	4.6	17
8	Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy, 2021, 23, 939-952.	0.7	16
9	Multispecific targeting of glioblastoma with tumor microenvironment-responsive multifunctional engineered NK cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	45
10	171â€Targeting the Immunomodulatory roles of T-cell immunoglobulin– and mucin domain–containing (TIM)–3 on natural killer cells in glioblastoma. , 2021, 9, A182-A182.		0
11	799â€Neoantigen-cytokine-chemokine multifunctional natural killer cell engager for immunotherapy of solid tumors. , 2021, 9, A834-A834.		0
12	130â€Engineered natural killer cells reactively block TIGIT and CD73 in the GBM microenvironment. , 2021, 9, A139-A139.		0
13	150â€Targeted delivery of a PD-L1-blocking scFv by CAR-NK cells shows potential as a new approach to immunotherapy for glioblastoma. , 2021, 9, A158-A158.		0
14	TIM-3 Expression Is Downregulated on Human NK Cells in Response to Cancer Targets in Synergy with Activation. Cancers, 2020, 12, 2417.	3.7	17
15	Functional and metabolic targeting of natural killer cells to solid tumors. Cellular Oncology (Dordrecht), 2020, 43, 577-600.	4.4	25
16	CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. Journal of Hematology and Oncology, 2020, 13, 76.	17.0	65
17	Nanoparticleâ€Mediated Intracellular Protection of Natural Killer Cells Avoids Cryoinjury and Retains Potent Antitumor Functions. Advanced Science, 2020, 7, 1902938	11.2	23
18	Axial plane single-molecule super-resolution microscopy of whole cells. Biomedical Optics Express, 2020, 11, 461.	2.9	12

#	Article	IF	CITATIONS
19	Reprogramming of natural killer cells and their use in immunotherapies of solid tumors. Immunotherapy, 2020, 12, 605-608.	2.0	0
20	Liposome-Scaffold Systems for Drug Delivery. , 2020, , 1-46.		0
21	530â€T-cell immunoglobulin– and mucin domain–containing (TIM)–3 downregulation in response to ex vivo activation and cancer targets correlates to NK cell functionality. , 2020, , .		0
22	163â€Nice: neoantigen-cytokine-chemokine multifunctional engager for NK cell immunotherapy of solid tumors. , 2020, , .		0
23	138â€In vivo localization of genetically engineered natural killer cells against glioblastoma using PET imaging. , 2020, , .		0
24	123â€Natural killer cells engineered with an inducible, responsive genetic construct targeting TIGIT and CD73 to relieve immunosuppression within the GBM microenvironment. , 2020, , .		0
25	134â€Tumor-responsive, multi-functional genetically-engineered natural killer cells for immunotherapy of glioblastoma. , 2020, , .		0
26	Immunometabolic Dysfunction of Natural Killer Cells Mediated by the Hypoxia-CD73 Axis in Solid Tumors. Frontiers in Molecular Biosciences, 2019, 6, 60.	3.5	76
27	NT5E/CD73 as Correlative Factor of Patient Survival and Natural Killer Cell Infiltration in Glioblastoma. Journal of Clinical Medicine, 2019, 8, 1526.	2.4	32
28	Bioinspired Preservation of Natural Killer Cells for Cancer Immunotherapy. Advanced Science, 2019, 6, 1802045.	11.2	33
29	Natural Killer Cells as Allogeneic Effectors in Adoptive Cancer Immunotherapy. Cancers, 2019, 11, 769.	3.7	138
30	Immunometabolic Responses of Natural Killer Cells to Inhibitory Tumor Microenvironment Checkpoints. Immunometabolism, 2019, 1, .	1.6	10
31	Tumor Microenvironment-Induced Immunometabolic Reprogramming of Natural Killer Cells. Frontiers in Immunology, 2018, 9, 2517.	4.8	58
32	Adenosinergic Signaling Alters Natural Killer Cell Functional Responses. Frontiers in Immunology, 2018, 9, 2533.	4.8	79
33	Regenerative Medicine in the State of Florida: Letter Outlining the Florida Organization for Regenerative Medicine. Stem Cells Translational Medicine, 2018, 7, 511-512.	3.3	0
34	Purinergic targeting enhances immunotherapy of CD73+ solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. , 2018, 6, 136.		108
35	Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies. Journal of Immunology Research, 2018, 2018, 1-20.	2.2	93
36	Adenosinergic signaling as a target for natural killer cell immunotherapy. Journal of Molecular Medicine, 2018, 96, 903-913.	3.9	40

SANDRO MATOSEVIC

#	Article	IF	CITATIONS
37	Engineering liposomal nanoparticles for targeted gene therapy. Gene Therapy, 2017, 24, 441-452.	4.5	159
38	Bioengineered liposome–scaffold composites as therapeutic delivery systems. Therapeutic Delivery, 2017, 8, 425-445.	2.2	20
39	Natural killer-92 cells maintain cytotoxic activity after long-term cryopreservation in novel DMSO-free media. Immunology Letters, 2017, 192, 35-41.	2.5	26
40	Points to Consider for Cell Manufacturing Equipment and Components. Cell & Gene Therapy Insights, 2017, 3, 793-805.	0.1	5
41	Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Delivery, 2016, 23, 3319-3329.	5.7	461
42	Matrix metalloproteinases as reagents for cell isolation. Enzyme and Microbial Technology, 2016, 93-94, 29-43.	3.2	3
43	Novel bio-inspired DMSO-free cryoprotectants for hard-to-preserve cell. Cytotherapy, 2015, 17, S75.	0.7	0
44	Isolation of mesenchymal stem cells using matrix metalloproteases. Cytotherapy, 2015, 17, S44-S45.	0.7	0
45	Cryopreservation of stem cells for the future: looking beyond DMSO. Cytotherapy, 2014, 16, S99.	0.7	1
46	Layer-by-layer cell membrane assembly. Nature Chemistry, 2013, 5, 958-963.	13.6	127
47	Layer-By-Layer Assembly of Complex Membranes. Biophysical Journal, 2013, 104, 676a.	0.5	Ο
48	Synthesizing artificial cells from giant unilamellar vesicles: Stateâ€ofâ€the art in the development of microfluidic technology. BioEssays, 2012, 34, 992-1001.	2.5	57
49	Layer-By-Layer Assembly of Cellular Structures. Biophysical Journal, 2012, 102, 28a.	0.5	1
50	Microfluidic Construction of Synthetic Cellular Structures. Biophysical Journal, 2012, 102, 502a.	0.5	0
51	Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line. Journal of the American Chemical Society, 2011, 133, 2798-2800.	13.7	178
52	Immobilised enzyme microreactor for screening of multi-step bioconversions: Characterisation of a de novo transketolase-ï‰-transaminase pathway to synthesise chiral amino alcohols. Journal of Biotechnology, 2011, 155, 320-329.	3.8	62
53	Fundamentals and applications of immobilized microfluidic enzymatic reactors. Journal of Chemical Technology and Biotechnology, 2011, 86, 325-334.	3.2	84
54	Design and characterization of a prototype enzyme microreactor: Quantification of immobilized transketolase kinetics. Biotechnology Progress, 2010, 26, 118-126.	2.6	19

#	Article	IF	CITATIONS
55	Towards engineering of de novo pathways for the synthesis of chiral chemicals using in vitro and in vivo approaches. New Biotechnology, 2009, 25, S159.	4.4	Ο
56	Quantification of kinetics for enzyme-catalysed reactions: implications for diffusional limitations at the 10Âml scale. Biotechnology Letters, 2008, 30, 995-1000.	2.2	11
57	Optimized Removal of Soluble Host Cell Proteins for the Recovery of met-Human Growth Hormone Inclusion Bodies from Escherichia coli Cell Lysate Using Crossflow Microfiltration. Biotechnology Progress, 2008, 23, 667-672.	2.6	15
58	Engineered natural killer cells impede the immunometabolic CD73-adenosine axis in solid tumors. ELife, 0, 11, .	6.0	11