Joel Rosenthal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5657162/publications.pdf

Version: 2024-02-01

66 papers

3,882 citations

30 h-index 62 g-index

75 all docs

75 docs citations

75 times ranked 5099 citing authors

#	Article	IF	CITATIONS
1	Role of Proton-Coupled Electron Transfer in O–O Bond Activation. Accounts of Chemical Research, 2007, 40, 543-553.	7.6	353
2	Selective Conversion of CO ₂ to CO with High Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst. Journal of the American Chemical Society, 2013, 135, 8798-8801.	6.6	328
3	Efficient Reduction of CO ₂ to CO with High Current Density Using in Situ or ex Situ Prepared Bi-Based Materials. Journal of the American Chemical Society, 2014, 136, 8361-8367.	6.6	259
4	Direct Detection of Nitroxyl in Aqueous Solution Using a Tripodal Copper(II) BODIPY Complex. Journal of the American Chemical Society, 2010, 132, 5536-5537.	6.6	248
5	Efficient Conversion of CO ₂ to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts. Journal of the American Chemical Society, 2015, 137, 5021-5027.	6.6	221
6	Rational Design of Bi Nanoparticles for Efficient Electrochemical CO ₂ Reduction: The Elucidation of Size and Surface Condition Effects. ACS Catalysis, 2016, 6, 6255-6264.	5.5	212
7	Molecular Chemistry of Consequence to Renewable Energy. Inorganic Chemistry, 2005, 44, 6879-6892.	1.9	200
8	Photocatalytic Oxidation of Hydrocarbons by a Bis-iron(III)-ν-oxo Pacman Porphyrin Using O2and Visible Light. Journal of the American Chemical Society, 2006, 128, 6546-6547.	6.6	139
9	Rapid Bioorthogonal Chemistry Turn-on through Enzymatic or Long Wavelength Photocatalytic Activation of Tetrazine Ligation. Journal of the American Chemical Society, 2016, 138, 5978-5983.	6.6	121
10	Oxygen and hydrogen photocatalysis by two-electron mixed-valence coordination compounds. Coordination Chemistry Reviews, 2005, 249, 1316-1326.	9.5	103
11	Directing the Outcome of CO ₂ Reduction at Bismuth Cathodes Using Varied Ionic Liquid Promoters. ACS Catalysis, 2018, 8, 2857-2863.	5.5	95
12	Synthesis, Electrochemistry, and Electrogenerated Chemiluminescence of Two BODIPY-Appended Bipyridine Homologues. Journal of the American Chemical Society, 2013, 135, 13558-13566.	6.6	89
13	Spectroscopic Determination of Proton Position in the Proton-Coupled Electron Transfer Pathways of Donorâ [^] Acceptor Supramolecule Assemblies. Journal of the American Chemical Society, 2006, 128, 10474-10483.	6.6	81
14	Observation of Proton-Coupled Electron Transfer by Transient Absorption Spectroscopy in a Hydrogen-Bonded, Porphyrin Donorâ 'Acceptor Assembly. Journal of Physical Chemistry B, 2004, 108, 6315-6321.	1.2	75
15	Aerobic Catalytic Photooxidation of Olefins by an Electron-Deficient Pacman Bisiron(III) ν-Oxo Porphyrin. Journal of Organic Chemistry, 2005, 70, 1885-1888.	1.7	73
16	The Anomalous Reactivity of Fluorobenzene in Electrophilic Aromatic Substitution and Related Phenomena. Journal of Chemical Education, 2003, 80, 679.	1.1	64
17	Synthesis, Electrochemistry, and Photophysics of a Family of Phlorin Macrocycles That Display Cooperative Fluoride Binding. Journal of the American Chemical Society, 2013, 135, 6601-6607.	6.6	61
18	Electron Transfer Driven by Proton Fluctuations in a Hydrogen-Bonded Donorâ^'Acceptor Assembly. Journal of Physical Chemistry B, 2006, 110, 18853-18858.	1.2	59

#	Article	IF	CITATIONS
19	Comparative PCET Study of a Donorâ^'Acceptor Pair Linked by Ionized and Nonionized Asymmetric Hydrogen-Bonded Interfaces. Journal of the American Chemical Society, 2009, 131, 7678-7684.	6.6	59
20	Photocatalytic Conversion of CO ₂ to CO Using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties. ACS Catalysis, 2013, 3, 1685-1692.	5.5	54
21	Synthesis, Photophysics, Electrochemistry and Electrogenerated Chemiluminescence of PEG-Modified BODIPY Dyes in Organic and Aqueous Solutions. Journal of Physical Chemistry C, 2013, 117, 5599-5609.	1.5	52
22	Gold Nanoshell-Linear Tetrapyrrole Conjugates for Near Infrared-Activated Dual Photodynamic and Photothermal Therapies. ACS Omega, 2020, 5, 926-940.	1.6	51
23	A Tetrapyrrole Macrocycle Displaying a Multielectron Redox Chemistry and Tunable Absorbance Profile. Journal of Physical Chemistry C, 2012, 116, 16918-16924.	1.5	49
24	Stereochemical control of H2O2 dismutation by Hangman porphyrins. Chemical Communications, 2007, , 2642.	2.2	44
25	Structural Dynamics and Evolution of Bismuth Electrodes during Electrochemical Reduction of CO ₂ in Imidazolium-Based Ionic Liquid Solutions. ACS Catalysis, 2017, 7, 7285-7295.	5.5	41
26	Cathodic Corrosion at the Bismuth–lonic Liquid Electrolyte Interface under Conditions for CO ₂ Reduction. Chemistry of Materials, 2018, 30, 2362-2373.	3.2	38
27	Reduction of CO2 using a rhenium bipyridine complex containing ancillary BODIPY moieties. Catalysis Today, 2014, 225, 149-157.	2.2	36
28	Synthesis, Photophysics, Electrochemistry, and Electrogenerated Chemiluminescence of a Homologous Set of BODIPY-Appended Bipyridine Derivatives. Journal of Physical Chemistry C, 2011, 115, 17993-18001.	1.5	35
29	Thermal versus Photochemical Reductive Elimination of Aryl Chlorides from NHC–Gold Complexes. Organometallics, 2013, 32, 5026-5029.	1.1	35
30	Evaluating Nanoshells and a Potent Biladiene Photosensitizer for Dual Photothermal and Photodynamic Therapy of Triple Negative Breast Cancer Cells. Nanomaterials, 2018, 8, 658.	1.9	32
31	Formation and photophysics of a stable concave–convex supramolecular complex of C60and a substituted s-triazine derivative. Chemical Communications, 2002, , 2538-2539.	2.2	29
32	Electrochemically Mediated Syntheses of Titanium(III)-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11383-11387.	6.6	29
33	Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index. Inorganic Chemistry, 2018, 57, 10608-10615.	1.9	26
34	Structurally Homologous \hat{l}^2 - and $\langle i \rangle$ meso $\langle i \rangle$ -Alkynyl Amidinium Porphyrins. Inorganic Chemistry, 2007, 46, 8668-8675.	1.9	25
35	Electrochemical, Spectroscopic, and ¹ O ₂ Sensitization Characteristics of Synthetically Accessible Linear Tetrapyrrole Complexes of Palladium and Platinum. Inorganic Chemistry, 2017, 56, 12703-12711.	1.9	25
36	Facile and Rapid Room-Temperature Electrosynthesis and Controlled Surface Growth of Fe-MIL-101 and Fe-MIL-101-NH ₂ . ACS Central Science, 2021, 7, 1427-1433.	5.3	25

#	Article	IF	CITATIONS
37	On-surface cross-coupling methods for the construction of modified electrode assemblies with tailored morphologies. Chemical Science, 2013, 4, 437-443.	3.7	24
38	Dissection of Alkylpyridinium Structures to Understand Deamination Reactions. ACS Catalysis, 2021, 11, 8456-8466.	5.5	24
39	Factors Controlling the Spectroscopic Properties and Supramolecular Chemistry of an Electron Deficient 5,5-Dimethylphlorin Architecture. Journal of Physical Chemistry C, 2014, 118, 14124-14132.	1.5	22
40	Insights into the Composition and Function of a Bismuth-Based Catalyst for Reduction of CO ₂ to CO. Journal of Physical Chemistry C, 2019, 123, 9087-9095.	1.5	22
41	Electrochemical, Spectroscopic, and ¹ O ₂ Sensitization Characteristics of 10,10-Dimethylbiladiene Complexes of Zinc and Copper. Journal of Physical Chemistry A, 2014, 118, 10639-10648.	1.1	21
42	Solar-powered synthesis of hydrocarbons from carbon dioxide and water. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9693-9695.	3.3	19
43	Spectroscopic and ¹ O ₂ Sensitization Characteristics of a Series of Isomeric Re(bpy)(CO) ₃ Cl Complexes Bearing Pendant BODIPY Chromophores. Inorganic Chemistry, 2019, 58, 5042-5050.	1.9	19
44	pH-Driven Mechanistic Switching from Electron Transfer to Energy Transfer between [Ru(bpy) ₃] ²⁺ and Ferrocene Derivatives. Journal of the American Chemical Society, 2018, 140, 10169-10178.	6.6	18
45	Electronic state dependence of heterogeneous electron transfer: injection from the S ₁ and S ₂ state of phlorin into TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 7914-7923.	1.3	16
46	Synthesis and structure of palladium(II) complexes supported by bis-NHC pincer ligands for the electrochemical activation of CO2. Polyhedron, 2017, 135, 134-143.	1.0	16
47	Selective CO ₂ Reduction over Rose's Metal in the Presence of an Imidazolium Ionic Liquid Electrolyte. ACS Applied Energy Materials, 2020, 3, 4193-4200.	2.5	16
48	Spectral observation of conversion between ionized vs. non-ionized proton-coupled electron transfer interfaces. Chemical Communications, 2008, , 2322.	2.2	15
49	Copper-Tin Alloys for the Electrocatalytic Reduction of CO2 in an Imidazolium-Based Non-Aqueous Electrolyte. Energies, 2019, 12, 3132.	1.6	13
50	3He NMR as a Sensitive Probe of Fullerene Reactivity: [2 + 2] Photocycloaddition of 3-Methyl-2-cyclohexenone to C70â€. Journal of Organic Chemistry, 2006, 71, 1191-1199.	1.7	11
51	Synthesis, Redox, and Spectroscopic Properties of Pd(II) 10,10-Dimethylisocorrole Complexes Prepared via Bromination of Dimethylbiladiene Oligotetrapyrroles. Inorganic Chemistry, 2020, 59, 18241-18252.	1.9	11
52	Electronic, Magnetic, and Redox Properties and O ₂ Reactivity of Iron(II) and Nickel(II) <i>0/i>-Semiquinonate Complexes of a Tris(thioether) Ligand: Uncovering the Intradiol Cleaving Reactivity of an Iron(II) <i>0/i>-Semiquinonate Complex. Inorganic Chemistry, 2017, 56, 10481-10495.</i></i>	1.9	10
53	The Relation between Hydrogen Atom Transfer and Proton-coupled Electron Transfer in Model Systems. , 0, , 503-562.		8
54	Energy transfer mediated by asymmetric hydrogen-bonded interfaces. Chemical Science, 2012, 3, 455-459.	3.7	8

#	Article	IF	CITATIONS
55	Nickel(II) Cyclen Complexes Bearing Ancillary Amide Appendages for the Electrocatalytic Reduction of CO ₂ . ACS Applied Energy Materials, 2019, 2, 8560-8569.	2.5	8
56	Synthesis, structure, electronic characterization, and halogenation of gold(III) phlorin complexes. Journal of Porphyrins and Phthalocyanines, 2021, 25, 683-695.	0.4	8
57	Synthesis, Spectroscopic, and ¹ O ₂ Sensitization Characteristics of Extended Pd(II) 10,10-Dimethylbiladiene Complexes Bearing Alkynyl–Aryl Appendages. Inorganic Chemistry, 2021, 60, 11154-11163.	1.9	7
58	Synthesis, Electrochemistry, and Photophysics of Pd(II) Biladiene Complexes Bearing Varied Substituents at the sp ³ -Hybridized 10-Position. Inorganic Chemistry, 2021, 60, 15797-15807.	1.9	7
59	Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, 031510.	0.9	5
60	Influence of Surface Composition of AgSn Films on the Selectivity and Electrokinetics of CO ₂ Reduction in the Presence of Protic Organic [DBU–H] ⁺ Cations. ACS Applied Energy Materials, 2021, 4, 13605-13616.	2.5	5
61	Electrochemically Mediated Oxidation of Sensitive Propargylic Benzylic Alcohols. Organic Letters, 2022, 24, 1423-1428.	2.4	5
62	An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the 4e ^{â€"} /4H ⁺ Peractivation of O ₂ to Water. Inorganic Chemistry, 2022, 61, 5442-5451.	1.9	4
63	Role of Electrostatics in Influencing the Pathway by Which the Excited State of [Ru(bpy) ₃] ²⁺ Is Deactivated by Ferrocene Derivatives. Journal of Physical Chemistry A, 2019, 123, 7673-7682.	1.1	3
64	Reversible Proton-Coupled Reduction of an Iron Nitrosyl Porphyrin within [DBU–H]+-Based Protic Ionic Liquid Nanodomains. Inorganic Chemistry, 2021, 60, 10631-10641.	1.9	3
65	A P-61 Black Widow Inspired Palladium Biladiene Complex for Efficient Sensitization of Singlet Oxygen Using Visible Light. Photochem, 2022, 2, 58-68.	1.3	3
66	Formation and Photophysics of a Stable Concaveâ€"Convex Supramolecular Complex of C60 and a Substituted s-Triazine Derivative ChemInform, 2003, 34, no.	0.1	0