
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5656551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes. Cell, 2015, 161, 1252-1265.	13.5	135
2	Characterization of a Cdc42 Protein Inhibitor and Its Use as a Molecular Probe. Journal of Biological Chemistry, 2013, 288, 8531-8543.	1.6	134
3	Potent hFPRL1 (ALXR) agonists as potential anti-inflammatory agents. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3713-3718.	1.0	113
4	Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antiviral Research, 2017, 138, 47-56.	1.9	112
5	Syntheses of the <i>Stemona</i> Alkaloids (±)-Stenine, (±)-Neostenine, and (±)-13-Epineostenine Using a Stereodivergent Diels–Alder/Azido-Schmidt Reaction. Journal of the American Chemical Society, 2008, 130, 6018-6024.	6.6	103
6	Facile Câ^'N Cleavage in a Series of Bridged Lactams. Journal of the American Chemical Society, 2005, 127, 4552-4553.	6.6	100
7	Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. Nature Chemical Biology, 2016, 12, 1023-1030.	3.9	88
8	A Combined Intramolecular Diels–Alder/Intramolecular Schmidt Reaction: Formal Synthesis of (±)-Stenine. Angewandte Chemie - International Edition, 2002, 41, 4316-4318.	7.2	80
9	A Competitive Nucleotide Binding Inhibitor: <i>In Vitro</i> Characterization of Rab7 GTPase Inhibition. ACS Chemical Biology, 2012, 7, 1095-1108.	1.6	76
10	Discovery of AMG 369, a Thiazolo[5,4- <i>b</i>]pyridine Agonist of S1P ₁ and S1P ₅ . ACS Medicinal Chemistry Letters, 2011, 2, 107-112.	1.3	51
11	Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State. Antimicrobial Agents and Chemotherapy, 2016, 60, 4552-4562.	1.4	46
12	Development of (<i>E</i>)-2-((1,4-Dimethylpiperazin-2-ylidene)amino)-5-nitro- <i>N</i> -phenylbenzamide, ML336: Novel 2-Amidinophenylbenzamides as Potent Inhibitors of Venezuelan Equine Encephalitis Virus. Journal of Medicinal Chemistry, 2014, 57, 8608-8621.	2.9	42
13	Interrogating a Hexokinase-Selected Small-Molecule Library for Inhibitors of Plasmodium falciparum Hexokinase. Antimicrobial Agents and Chemotherapy, 2013, 57, 3731-3737.	1.4	41
14	Potent and selective inhibitors of the TASK-1 potassium channel through chemical optimization of a bis-amide scaffold. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3968-3973.	1.0	40
15	Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2. PLoS Pathogens, 2014, 10, e1004213.	2.1	34
16	Editing N-Glycan Site Occupancy with Small-Molecule Oligosaccharyltransferase Inhibitors. Cell Chemical Biology, 2018, 25, 1231-1241.e4.	2.5	31
17	A Pan-GTPase Inhibitor as a Molecular Probe. PLoS ONE, 2015, 10, e0134317.	1.1	30
18	Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1. Journal of Medicinal Chemistry, 2020, 63, 103-121.	2.9	30

#	Article	IF	CITATIONS
19	Structure-guided design of substituted aza-benzimidazoles as potent hypoxia inducible factor-11± prolyl hydroxylase-2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5023-5026.	1.0	26
20	Crystal structures and mutagenesis of PPP-family ser/thr protein phosphatases elucidate the selectivity of cantharidin and novel norcantharidin-based inhibitors of PP5C. Biochemical Pharmacology, 2016, 109, 14-26.	2.0	26
21	Identification and Characterization of Influenza Virus Entry Inhibitors through Dual Myxovirus High-Throughput Screening. Journal of Virology, 2016, 90, 7368-7387.	1.5	25
22	Optimization of Potent and Selective Quinazolinediones: Inhibitors of Respiratory Syncytial Virus That Block RNA-Dependent RNA-Polymerase Complex Activity. Journal of Medicinal Chemistry, 2014, 57, 10314-10328.	2.9	23
23	Identification of a Small Molecule Yeast TORC1 Inhibitor with a Multiplex Screen Based on Flow Cytometry. ACS Chemical Biology, 2012, 7, 715-722.	1.6	22
24	Evaluation of substituted ebselen derivatives as potential trypanocidal agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 537-541.	1.0	22
25	Enzymatic and Structural Characterization of the <i>Naegleria fowleri</i> Glucokinase. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	21
26	A Selective ATP-Binding Cassette Subfamily G Member 2 Efflux Inhibitor Revealed via High-Throughput Flow Cytometry. Journal of Biomolecular Screening, 2013, 18, 26-38.	2.6	20
27	Discovery of a Potent, S1P ₃ -Sparing Benzothiazole Agonist of Sphingosine-1-Phosphate Receptor 1 (S1P ₁). ACS Medicinal Chemistry Letters, 2011, 2, 102-106.	1.3	19
28	Discovery of Sulfonamidebenzamides as Selective Apoptotic CHOP Pathway Activators of the Unfolded Protein Response. ACS Medicinal Chemistry Letters, 2014, 5, 1278-1283.	1.3	19
29	Title is missing!. Angewandte Chemie, 2002, 114, 4492-4494.	1.6	18
30	A cell based high-throughput screening approach for the discovery of new inhibitors of respiratory syncytial virus. Virology Journal, 2013, 10, 19.	1.4	17
31	Efficacy of a ML336 derivative against Venezuelan and eastern equine encephalitis viruses. Antiviral Research, 2019, 167, 25-34.	1.9	16
32	Identification of Novel Plasmodium falciparum Hexokinase Inhibitors with Antiparasitic Activity. Antimicrobial Agents and Chemotherapy, 2016, 60, 6023-6033.	1.4	15
33	Divergent 2â€Chloroquinazolinâ€4(3 <i>H</i>)â€one Rearrangement: Twistedâ€Cyclic Guanidine Formation or Ringâ€Fused <i>N</i> â€Acylguanidines via a Domino Process. Chemistry - A European Journal, 2020, 26, 2486-2492.	1.7	15
34	(<i>S</i>)- <i>N</i> -(2,5-Dimethylphenyl)-1-(quinoline-8-ylsulfonyl)pyrrolidine-2-carboxamide as a Small Molecule Inhibitor Probe for the Study of Respiratory Syncytial Virus Infection. Journal of Medicinal Chemistry, 2012, 55, 8582-8587.	2.9	14
35	Optimization and Evaluation of Antiparasitic Benzamidobenzoic Acids as Inhibitors of Kinetoplastid Hexokinaseâ€1. ChemMedChem, 2017, 12, 1994-2005.	1.6	14
36	High-Throughput Screening Identifies a Bisphenol Inhibitor of SV40 Large T Antigen ATPase Activity. Journal of Biomolecular Screening, 2012, 17, 194-203.	2.6	12

#	Article	IF	CITATIONS
37	Synthesis of Ring-Fused, N-Substituted 4-Quinolinones Using pKa-Guided, Base-Promoted Annulations with Isatoic Anhydrides: Total Synthesis of Penicinotam. Journal of Organic Chemistry, 2020, 85, 464-481.	1.7	12
38	Benzamidine ML336 inhibits plus and minus strand RNA synthesis of Venezuelan equine encephalitis virus without affecting host RNA production. Antiviral Research, 2020, 174, 104674.	1.9	10
39	Modulating N- versus O-arylation in pyrazolone-aryl halide couplings. Tetrahedron Letters, 2008, 49, 794-798.	0.7	9
40	Novel 5- and 6-subtituted benzothiazoles with improved physicochemical properties: Potent S1P1 agonists with in vivo lymphocyte-depleting activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 628-633.	1.0	9
41	One-pot, regiospecific assembly of (E)-benzamidines from δ- and γ-amino acids via an intramolecular aminoquinazolinone rearrangement. Organic and Biomolecular Chemistry, 2016, 14, 3950-3955.	1.5	9
42	Telescoped synthesis of C3-functionalized (<i>E</i>)-arylamidines using Ugi–Mumm and regiospecific quinazolinone rearrangements. Organic and Biomolecular Chemistry, 2019, 17, 3118-3128.	1.5	9
43	Emergence and Magnitude of ML336 Resistance in Venezuelan Equine Encephalitis Virus Depend on the Microenvironment. Journal of Virology, 2020, 94, .	1.5	9
44	Diastereoselective, Multicomponent Synthesis of Pyrrolopyrazinoquinazolinones via a Tandem Quinazolinone Rearrangement/Intramolecular Ring Closure of Tautomeric (<i>Z</i>)-Benzamidines. Organic Letters, 2021, 23, 5799-5803.	2.4	8
45	Time to â€~Mind the Gap' in novel small molecule drug discovery for direct-acting antivirals for SARS-CoV-2. Current Opinion in Virology, 2021, 50, 1-7.	2.6	8
46	An Ultra-High-Throughput Screen for Catalytic Inhibitors of Serine/Threonine Protein Phosphatases Types 1 and 5 (PP1C and PP5C). SLAS Discovery, 2017, 22, 21-31.	1.4	7
47	Palladium-Catalyzed Cyclocarbonylation of Pyridinylated Vinylogous Amides and Ureas to Generate Ring-Fused Pyridopyrimidinones. Organic Letters, 2018, 20, 4393-4396.	2.4	6
48	Function through bio-inspired, synthesis-informed design: step-economical syntheses of designed kinase inhibitors. Organic Chemistry Frontiers, 2014, 1, 1166-1171.	2.3	5
49	Construction of <i>N</i> â€Bocâ€2â€Alkylaminoquinazolinâ€4(3 <i>H</i>)â€Ones via a Three omponent, One Protocol Mediated by Copper(II) Chloride that Spares Enantiomeric Purity. Advanced Synthesis and Catalysis, 2021, 363, 1638-1645.	eâ€Pot 2.1	5
50	Piperazinobenzodiazepinones: New Encephalitic Alphavirus Inhibitors via Ring Expansion of 2-Dichloromethylquinazolinones. ACS Medicinal Chemistry Letters, 2022, 13, 546-553.	1.3	5
51	Antiparasitic lethality of sulfonamidebenzamides in kinetoplastids. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 755-758.	1.0	4
52	A targeted delivery strategy for the development of potent trypanocides. Chemical Communications, 2017, 53, 8735-8738.	2.2	3
53	Dual-Stage Picolinic Acid-Derived Inhibitors of <i>Toxoplasma gondii</i> . ACS Medicinal Chemistry Letters, 2020, 11, 2382-2388.	1.3	3
54	Engineering Selectivity for Reduced Toxicity of Bacterial Kinase Inhibitors Using Structure-Guided Medicinal Chemistry. ACS Medicinal Chemistry Letters, 2021, 12, 228-235.	1.3	3

#	Article	IF	CITATIONS
55	Characterization of Glucokinases from Pathogenic Free-Living Amoebae. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	2
56	Characterization of a Cdc42 protein inhibitor and its use as a molecular probe Journal of Biological Chemistry, 2014, 289, 6837.	1.6	0
57	In This Issue, Volume 10, Issue 3. ACS Medicinal Chemistry Letters, 2019, 10, 227-227.	1.3	0
58	In This Issue, Volume 10, Issue 12. ACS Medicinal Chemistry Letters, 2019, 10, 1586-1587.	1.3	0
59	In This Issue, Volume 12, Issue 4. ACS Medicinal Chemistry Letters, 2021, 12, 508-509.	1.3	0
60	In This Issue, Volume 11, Issue 11. ACS Medicinal Chemistry Letters, 2020, 11, 2053-2054.	1.3	0
61	An Innovation 10 Years in the Making: The Stories in the Pages of <i>ACS Medicinal Chemistry Letters</i> . ACS Medicinal Chemistry Letters, 2022, 13, 540-545.	1.3	Ο
62	In This Issue, Volume 13, Issue 2. ACS Medicinal Chemistry Letters, 2022, 13, 150-151.	1.3	0
63	In This Issue, Volume 13, Issue 4. ACS Medicinal Chemistry Letters, 2022, 13, 515-516.	1.3	Ο