Tomohiro Yasuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5656364/publications.pdf

Version: 2024-02-01

			279798	3	361022
	37	3,395	23		35
	papers	citations	h-index		g-index
Ī				ľ	
					44.4
	39	39	39		4119
	all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Continuous Gas-Phase Hydroformylation of Propene with CO ₂ Using SILP Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 11674-11680.	6.7	14
2	Key factor governing the physicochemical properties and extent of proton transfer in protic ionic liquids: Î"p <i>K</i> _a or chemical structure?. Physical Chemistry Chemical Physics, 2019, 21, 418-426.	2.8	42
3	Ion Gels for Ionic Polymer Actuators. , 2019, , 217-232.		o
4	Reverse water gas shift reaction using supported ionic liquid phase catalysts. Applied Catalysis B: Environmental, 2018, 232, 299-305.	20.2	35
5	Sulfonated Polyimide/Ionic Liquid Composite Membranes for CO ₂ Separation: Transport Properties in Relation to Their Nanostructures. Macromolecules, 2018, 51, 7112-7120.	4.8	40
6	Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 2017, 117, 7190-7239.	47.7	1,214
7	Sulfonated polyimide/ionic liquid composite membranes for carbon dioxide separation. Polymer Journal, 2017, 49, 671-676.	2.7	28
8	Amphoteric water as acid and base for protic ionic liquids and their electrochemical activity when used as fuel cell electrolytes. Faraday Discussions, 2017, 206, 353-364.	3.2	16
9	Binary Protic Ionic Liquid Mixtures as a Proton Conductor: High Fuel Cell Reaction Activity and Facile Proton Transport. Journal of Physical Chemistry C, 2014, 118, 27631-27639.	3.1	7 3
10	Proton-conductivity-enhancing Ionic Liquid Consisting of Guanidine and Excess Trifluoromethanesulfonic Acid. Chemistry Letters, 2014, 43, 649-651.	1.3	7
11	Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 20246-20256.	3.1	155
12	Solubility of Poly(methyl methacrylate) in Ionic Liquids in Relation to Solvent Parameters. Langmuir, 2014, 30, 3228-3235.	3.5	47
13	Ion Gels for Ionic Polymer Actuators. , 2014, , 141-156.		3
14	Comparative Study on Physicochemical Properties of Protic Ionic Liquids Based on Allylammonium and Propylammonium Cations. Journal of Chemical & Engineering Data, 2013, 58, 2724-2732.	1.9	50
15	Alternating copolymer based on sulfonamideâ€substituted phenylmaleimide and vinyl monomers as polymer electrolyte membrane. Journal of Polymer Science Part A, 2013, 51, 2233-2242.	2.3	8
16	Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids. Journal of Chemical Physics, 2013, 139, 174504.	3.0	63
17	Electrochemical properties of protic ionic liquids: correlation between open circuit potential for H2/O2 cells under non-humidified conditions and Î"pKa. RSC Advances, 2013, 3, 4141.	3.6	45
18	Printable Polymer Actuators from Ionic Liquid, Soluble Polyimide, and Ubiquitous Carbon Materials. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6307-6315.	8.0	63

#	Article	IF	Citations
19	Protic ionic liquids: Fuel cell applications. MRS Bulletin, 2013, 38, 560-566.	3.5	170
20	Protic Ionic Liquids Based on a Super-Strong Base: Correlation between Physicochemical Properties and Î"pKa. Materials Research Society Symposia Proceedings, 2012, 1473, 1.	0.1	3
21	Effects of Polymer Structure on Properties of Sulfonated Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified Fuel Cell Applications. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1783-1790.	8.0	94
22	Physicochemical properties determined by Î"pKa for protic ionic liquids based on an organic super-strong base with various BrÃ,nsted acids. Physical Chemistry Chemical Physics, 2012, 14, 5178.	2.8	201
23	Hydrogen bonds in protic ionic liquids and their correlation with physicochemical properties. Chemical Communications, 2011, 47, 12676.	4.1	103
24	A Mesothermal Fuel Cell using Diethylmethylammonium Trifluoromethanesulfonate Absorbed Membrane with H3PO4 Addition and Various Amount of Electrolyte Loading in Catalyst Layer. Electrochemistry, 2011, 79, 377-380.	1.4	5
25	Applications of Ionic Liquids as Electrolyte for Energy Devices. Journal of Ion Exchange, 2011, 22, 58-64.	0.3	1
26	Performance of Nonhumidified Intermediate-temperature Fuel Cells Based on Protic Ionic Liquids Prepared from Oxo and Amide Acids. Chemistry Letters, 2010, 39, 678-679.	1.3	12
27	Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. Journal of Power Sources, 2010, 195, 5909-5914.	7.8	149
28	Nonhumidified Intermediate Temperature Fuel Cells Using Protic Ionic Liquids. Journal of the American Chemical Society, 2010, 132, 9764-9773.	13.7	426
29	Novel styrene/N-phenylmaleimidealternating copolymers with pendant sulfonimide acid groups for polymer electrolyte fuel cell applications. Journal of Materials Chemistry, 2009, 19, 514-521.	6.7	20
30	Hydrophobic Protic Ionic Liquid for Nonhumidified Intermediate-temperature Fuel Cells. Chemistry Letters, 2009, 38, 692-693.	1.3	35
31	Substituents effect on the properties of sulfonated polyimide copolymers. Journal of Polymer Science Part A, 2008, 46, 4469-4478.	2.3	29
32	Synthesis and properties of a polyimide containing pendant sulfophenoxypropoxy groups. Journal of Polymer Science Part A, 2007, 45, 157-163.	2.3	87
33	Synthesis and properties of polyimides bearing acid groups on long pendant aliphatic chains. Journal of Polymer Science Part A, 2006, 44, 3995-4005.	2.3	44
34	Novel Aromatic Polymer Electrolyte with Comb-like Structure: Synthesis and Properties. Macromolecular Chemistry and Physics, 2005, 206, 2390-2395.	2.2	3
35	Synthesis and properties of polyimide ionomers containing sulfoalkoxy and fluorenyl groups. Journal of Polymer Science Part A, 2005, 43, 4439-4445.	2.3	65
36	Novel Synthesis of π-Conjugated Molecules by Cross-Metathesis of Vinylarene and Vinylferrocene with a Schrock Catalyst. Advanced Synthesis and Catalysis, 2002, 344, 705.	4.3	24

Tomohiro Yasuda

#	Article	IF	CITATIONS
37	Selective Synthesis of 1-Aryl-2-ferrocenylethylene by Cross-Metathesis. Chemistry Letters, 2001, 30, 812-813.	1.3	18