

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/565613/publications.pdf Version: 2024-02-01

Ιτινι Χτ

#	Article	IF	CITATIONS
1	Infrared assisted extraction of bioactive compounds from plant materials: Current research and future prospect. Food Chemistry, 2022, 371, 131192.	8.2	15
2	Recent advances in continuous extraction of bioactive ingredients from food-processing wastes by pulsed electric fields. Critical Reviews in Food Science and Nutrition, 2021, 61, 1738-1750.	10.3	31
3	Comparison of batch and circulating processes for polyphenols extraction from pomelo peels by liquid-phase pulsed discharge. Food Chemistry, 2021, 340, 127918.	8.2	6
4	Vesicle-enhanced liquid-phase pulsed discharge extraction of polyphenols from green tea leaves. Innovative Food Science and Emerging Technologies, 2021, 74, 102839.	5.6	8
5	Kinetic modeling for high voltage electrical discharge extraction based on discharge energy input. Food Chemistry, 2020, 314, 126168.	8.2	11
6	Combination of liquid-phase pulsed discharge and ultrasonic for saponins extraction from lychee seeds. Ultrasonics Sonochemistry, 2020, 69, 105264.	8.2	11
7	Recent developments in detoxication techniques for aristolochic acid-containing traditional Chinese medicines. RSC Advances, 2020, 10, 1410-1425.	3.6	9
8	Optimization of Continuous Extraction of Polyphenols from Grape Pomace by a Pulsed Electrical Discharge System with a "Needle-Ring Type―Treatment Chamber. ACS Sustainable Chemistry and Engineering, 2019, 7, 9342-9351.	6.7	12
9	Optimization of Circulating Extraction of Polysaccharides from <i>Gracilaria Lemaneiformis</i> Using Pulsed Electrical Discharge. ACS Sustainable Chemistry and Engineering, 2019, 7, 3593-3601.	6.7	14
10	Recent advances in high voltage electric discharge extraction of bioactive ingredients from plant materials. Food Chemistry, 2019, 277, 246-260.	8.2	94
11	Continuous high voltage electrical discharge extraction of flavonoids from peanut shells based on "annular gap type―treatment chamber. Food Chemistry, 2018, 256, 350-357.	8.2	36
12	Circulating Polyphenols Extraction System with High-Voltage Electrical Discharge: Design and Performance Evaluation. ACS Sustainable Chemistry and Engineering, 2018, 6, 15402-15410.	6.7	20
13	High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds—A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 2877-2888.	10.3	80
14	Ultrahigh pressure extraction of bioactive compounds from plants—A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 1097-1106.	10.3	68
15	Mechanochemical assisted extraction: A novel, efficient, eco-friendly technology. Trends in Food Science and Technology, 2017, 66, 166-175.	15.1	55
16	Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge. Food Chemistry, 2017, 230, 354-361.	8.2	94
17	Kinetic modeling of pressure-assisted solvent extraction of polyphenols from green tea in comparison with the conventional extraction. Food Chemistry, 2015, 166, 287-291.	8.2	31
18	Optimization of Ultrahigh-Pressure Extraction of Polyphenolic Antioxidants from Green Tea by Response Surface Methodology. Food and Bioprocess Technology, 2013, 6, 2538-2546.	4.7	33

Jun Xi

#	Article	IF	CITATIONS
19	Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols. Food Chemistry, 2013, 141, 320-326.	8.2	69
20	Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. International Journal of Pharmaceutics, 2009, 382, 139-143.	5.2	144