
Manohar Chirumamilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5656012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Nanostar Dimers with a Subâ€10â€nm Gap for Singleâ€/Fewâ€Molecule Surfaceâ€Enhanced Raman Scatterir Advanced Materials, 2014, 26, 2353-2358.	^{ng.} 21.0	263
2	Largeâ€Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars. Advanced Optical Materials, 2017, 5, 1700552.	7.3	126
3	Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from Few Molecules. ACS Nano, 2014, 8, 7986-7994.	14.6	101
4	Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications. Optical Materials Express, 2016, 6, 2704.	3.0	101
5	Gold Nanoantennas on a Pedestal for Plasmonic Enhancement in the Infrared. ACS Photonics, 2015, 2, 497-505.	6.6	76
6	Plasmon based biosensor for distinguishing different peptides mutation states. Scientific Reports, 2013, 3, 1792.	3.3	68
7	Metamaterial emitter for thermophotovoltaics stable up to 1400 °C. Scientific Reports, 2019, 9, 7241.	3.3	64
8	Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering. Nanotechnology, 2014, 25, 235303.	2.6	49
9	Terahertz Dipole Nanoantenna Arrays: Resonance Characteristics. Plasmonics, 2013, 8, 133-138.	3.4	35
10	Thermal stability of tungsten based metamaterial emitter under medium vacuum and inert gas conditions. Scientific Reports, 2020, 10, 3605.	3.3	34
11	Unprecedented Thermal Stability of Plasmonic Titanium Nitride Films up to 1400 °C. Advanced Optical Materials, 2021, 9, 2100323.	7.3	34
12	Hot‧pot Engineering in 3D Multiâ€Branched Nanostructures: Ultrasensitive Substrates for Surfaceâ€Enhanced Raman Spectroscopy. Advanced Optical Materials, 2017, 5, 1600836.	7.3	32
13	Ultra-thin titanium nitride films for refractory spectral selectivity [Invited]. Optical Materials Express, 2018, 8, 3717.	3.0	26
14	Near-infrared tailored thermal emission from wafer-scale continuous-film resonators. Optics Express, 2015, 23, A1111.	3.4	24
15	Harnessing Slow Light in Optoelectronically Engineered Nanoporous Photonic Crystals for Visible Light-Enhanced Photocatalysis. ACS Catalysis, 2021, 11, 12947-12962.	11.2	24
16	Poly(methyl methacrylate) composites with size-selected silver nanoparticles fabricated using cluster beam technique. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1152-1159.	2.1	23
17	Spectrally selective emitters based on 3D Mo nanopillars for thermophotovoltaic energy harvesting. Materials Today Physics, 2021, 21, 100503.	6.0	20
18	Optimization and characterization of Au cuboid nanostructures as a SERS device for sensing applications. Microelectronic Engineering, 2012, 97, 189-192.	2.4	19

MANOHAR CHIRUMAMILLA

#	Article	IF	CITATIONS
19	Plasmonic nanostars for SERS application. Microelectronic Engineering, 2013, 111, 247-250.	2.4	19
20	Interplay between electric and magnetic effect in adiabatic polaritonic systems. Optics Express, 2013, 21, 7538.	3.4	19
21	Nanoplasmonic structures for biophotonic applications: SERS overview. Annalen Der Physik, 2012, 524, 620-636.	2.4	18
22	Fabrication and characterization of a nanoantenna-based Raman device for ultrasensitive spectroscopic applications. Microelectronic Engineering, 2012, 98, 424-427.	2.4	15
23	Structural degradation of tungsten sandwiched in hafnia layers determined by in-situ XRD up to 1520°C. Scientific Reports, 2021, 11, 3330.	3.3	15
24	Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals. Physical Review B, 2016, 93, .	3.2	12
25	Design and top-down fabrication of metallic L-shape gap nanoantennas supporting plasmon-polariton modes. Microelectronic Engineering, 2013, 111, 91-95.	2.4	7
26	Arrays of Size-Selected Metal Nanoparticles Formed by Cluster Ion Beam Technique. MRS Advances, 2018, 3, 2771-2776.	0.9	7
27	Which factor determines the optical losses in refractory tungsten thin films at high temperatures?. Applied Surface Science, 2022, 588, 152927.	6.1	5
28	Thermophotovoltaics: Largeâ€Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars (Advanced Optical Materials 22/2017). Advanced Optical Materials, 2017, 5, .	7.3	3
29	Plasmonic Nanostructures: 3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering (Adv. Mater. 15/2014). Advanced Materials, 2014, 26, 2352-2352.	21.0	1
30	Metal Structures as Advanced Materials in Nanotechnology. , 2014, , 615-669.		1
31	Nanoparticles and Nanostructures for Biophotonic Applications. , 0, , .		1
32	Frontispiece: Nanoplasmonic structures for biophotonic applications: SERS overview. Annalen Der Physik, 2012, 524, 619-619.	2.4	0
33	3D plasmonic nanostructures as building blocks for ultrasensitive Raman spectroscopy. , 2014, , .		0
34	Plasmonic Nanostructures for Nanoscale Energy Delivery and Biosensing: Design Fabrication and Characterization. , 2014, , 451-502.		0
35	3D Plasmonic nanostar structures for recyclable SERS applications. , 2015, , .		0
36	Engineering 3D Multi-Branched Nanostructures for Ultra- Sensing Applications. , 2018, , .		0

36 Engineering 3D Multi-Branched Nanostructures for Ultra- Sensing Applications. , 2018, , .

#	Article	IF	CITATIONS
37	Optical Properties of the Refractory Metals at High Temperatures. , 2021, , .		Ο
38	Terahertz Resonant Dipole Nanoantennas. , 2012, , .		0
39	Modeling of Enhanced Electromagnetic Fields in Plasmonic Nanostructures. , 2015, , 119-158.		Ο
40	High Temperature Optical Metamaterials. , 2019, , .		0
41	Spectrally selective emitters stable up to 1400.C for thermophotovoltaic applications. , 2020, , .		0