Arne D Ekstrom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5655985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1549-1559.	3.9	8
2	Combination and competition between path integration and landmark navigation in the estimation of heading direction. PLoS Computational Biology, 2022, 18, e1009222.	1.5	14
3	Largely intact memory for spatial locations during navigation in an individual with dense amnesia. Neuropsychologia, 2022, 170, 108225.	0.7	9
4	Landmarks: A solution for spatial navigation and memory experiments in virtual reality. Behavior Research Methods, 2021, 53, 1046-1059.	2.3	24
5	An Important Step toward Understanding the Role of Body-based Cues on Human Spatial Memory for Large-Scale Environments. Journal of Cognitive Neuroscience, 2021, 33, 167-179.	1.1	13
6	Regional variation in neurovascular coupling and why we still lack a Rosetta Stone. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190634.	1.8	26
7	Pattern Separation in the Human Hippocampus: Response to Quiroga. Trends in Cognitive Sciences, 2021, 25, 423-424.	4.0	11
8	Hippocampal volume and navigational ability: The map(ping) is not to scale. Neuroscience and Biobehavioral Reviews, 2021, 126, 102-112.	2.9	10
9	Early Intervention via Stimulation of the Medial Septal Nucleus Improves Cognition and Alters Markers of Epileptogenesis in Pilocarpine-Induced Epilepsy. Frontiers in Neurology, 2021, 12, 708957.	1.1	4
10	Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nature Communications, 2021, 12, 6231.	5.8	22
11	The role of the fornix in human navigational learning. Cortex, 2020, 124, 97-110.	1.1	26
12	Grid coding, spatial representation, and navigation: Should we assume an isomorphism?. Hippocampus, 2020, 30, 422-432.	0.9	20
13	Recovery of Theta Frequency Oscillations in Rats Following Lateral Fluid Percussion Corresponds With a Mild Cognitive Phenotype. Frontiers in Neurology, 2020, 11, 600171.	1.1	9
14	How Much of What We Learn in Virtual Reality Transfers to Real-World Navigation?. Multisensory Research, 2020, 33, 479-503.	0.6	26
15	Category Selectivity for Face and Scene Recognition in Human Medial Parietal Cortex. Current Biology, 2020, 30, 2707-2715.e3.	1.8	34
16	Precision, binding, and the hippocampus: Precisely what are we talking about?. Neuropsychologia, 2020, 138, 107341.	0.7	46
17	Cognitive Neuroscience: Why Do We Get Lost When We Are Stressed?. Current Biology, 2020, 30, R439-R441	1.8	1
18	Path integration in large-scale space and with novel geometries: Comparing vector addition and encoding-error models. PLoS Computational Biology, 2020, 16, e1007489.	1.5	22

Arne D Ekstrom

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1007489.		Ο
20	Title is missing!. , 2020, 16, e1007489.		0
21	Title is missing!. , 2020, 16, e1007489.		Ο
22	Title is missing!. , 2020, 16, e1007489.		0
23	Title is missing!. , 2020, 16, e1007489.		0
24	Title is missing!. , 2020, 16, e1007489.		0
25	Flexible network community organization during the encoding and retrieval of spatiotemporal episodic memories. Network Neuroscience, 2019, 3, 1070-1093.	1.4	17
26	A Modality-Independent Network Underlies the Retrieval of Large-Scale Spatial Environments in the Human Brain. Neuron, 2019, 104, 611-622.e7.	3.8	49
27	Reply to â€~Active and effective replay: systems consolidation reconsidered again'. Nature Reviews Neuroscience, 2019, 20, 507-508.	4.9	3
28	A contextual binding theory of episodic memory: systems consolidation reconsidered. Nature Reviews Neuroscience, 2019, 20, 364-375.	4.9	246
29	Which way is the bookstore? A closer look at the judgments of relative directions task. Spatial Cognition and Computation, 2019, 19, 93-129.	0.6	17
30	Medial septal stimulation increases seizure threshold and improves cognition in epileptic rats. Brain Stimulation, 2019, 12, 735-742.	0.7	25
31	Verbal cues flexibly transform spatial representations in human memory. Memory, 2019, 27, 465-479.	0.9	5
32	Learning-dependent evolution of spatial representations in large-scale virtual environments Journal of Experimental Psychology: Learning Memory and Cognition, 2019, 45, 497-514.	0.7	18
33	Dissociation of frontalâ€midline deltaâ€ŧheta and posterior alpha oscillations: A mobile EEG study. Psychophysiology, 2018, 55, e13090.	1.2	38
34	CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nature Communications, 2018, 9, 294.	5.8	140
35	Rightward and leftward biases in temporal reproduction of objects represented in central and peripheral spaces. Neurobiology of Learning and Memory, 2018, 153, 71-78.	1.0	7
36	Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus, 2018, 28, 680-687.	0.9	145

ARNE D EKSTROM

#	Article	IF	CITATIONS
37	Temporal encoding strategies result in boosts to final free recall performance comparable to spatial ones. Memory and Cognition, 2018, 46, 17-31.	0.9	15
38	Network-based brain stimulation selectively impairs spatial retrieval. Brain Stimulation, 2018, 11, 213-221.	0.7	32
39	Close but no cigar: Spatial precision deficits following medial temporal lobe lesions provide novel insight into theoretical models of navigation and memory. Hippocampus, 2018, 28, 31-41.	0.9	46
40	Dynamic Neural Network Reconfiguration During the Generation and Reinstatement of Mnemonic Representations. Frontiers in Human Neuroscience, 2018, 12, 292.	1.0	7
41	Perspective: Assessing the Flexible Acquisition, Integration, and Deployment of Human Spatial Representations and Information. Frontiers in Human Neuroscience, 2018, 12, 281.	1.0	14
42	Assessment of a Short, Focused Training to Reduce Symptoms of Cybersickness. Presence: Teleoperators and Virtual Environments, 2018, 27, 361-377.	0.3	1
43	Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nature Communications, 2017, 8, 14415.	5.8	157
44	A Tale of Two Temporal Coding Strategies: Common and Dissociable Brain Regions Involved in Recency versus Associative Temporal Order Retrieval Strategies. Journal of Cognitive Neuroscience, 2017, 29, 739-754.	1.1	13
45	Human spatial navigation: representations across dimensions and scales. Current Opinion in Behavioral Sciences, 2017, 17, 84-89.	2.0	63
46	Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature. Journal of Neurophysiology, 2017, 118, 3328-3344.	0.9	114
47	A network approach for modulating memory processes via direct and indirect brain stimulation: Toward a causal approach for the neural basis of memory. Neurobiology of Learning and Memory, 2016, 134, 162-177.	1.0	90
48	Mental simulation of routes during navigation involves adaptive temporal compression. Cognition, 2016, 157, 14-23.	1.1	46
49	Impairments in precision, rather than spatial strategy, characterize performance on the virtual Morris Water Maze: A case study. Neuropsychologia, 2016, 80, 90-101.	0.7	62
50	Oscillations Go the Distance: Low-Frequency Human Hippocampal Oscillations Code Spatial Distance in the Absence of Sensory Cues during Teleportation. Neuron, 2016, 89, 1180-1186.	3.8	89
51	Why vision is important to how we navigate. Hippocampus, 2015, 25, 731-735.	0.9	82
52	Complementary Roles of Human Hippocampal Subfields in Differentiation and Integration of Spatial Context. Journal of Cognitive Neuroscience, 2015, 27, 546-559.	1.1	61
53	Septohippocampal Neuromodulation Improves Cognition after Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1822-1832.	1.7	59
54	Roles of human hippocampal subfields in retrieval of spatial and temporal context. Behavioural Brain Research, 2015, 278, 549-558.	1.2	44

Arne D Ekstrom

#	Article	IF	CITATIONS
55	Specific responses of human hippocampal neurons are associated with better memory. Proceedings of the United States of America, 2015, 112, 10503-10508.	3.3	44
56	High-resolution 7T fMRI of Human Hippocampal Subfields during Associative Learning. Journal of Cognitive Neuroscience, 2015, 27, 1194-1206.	1.1	54
57	More than spikes: common oscillatory mechanisms for content specific neural representations during perception and memory. Current Opinion in Neurobiology, 2015, 31, 33-39.	2.0	88
58	Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms. ELife, 2015, 4, .	2.8	70
59	The Spectro-Contextual Encoding and Retrieval Theory of Episodic Memory. Frontiers in Human Neuroscience, 2014, 8, 75.	1.0	49
60	A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Frontiers in Human Neuroscience, 2014, 8, 803.	1.0	182
61	Complementary Roles of Human Hippocampal Subregions during Retrieval of Spatiotemporal Context. Journal of Neuroscience, 2014, 34, 6834-6842.	1.7	83
62	Volume of hippocampal subfields and episodic memory in childhood and adolescence. NeuroImage, 2014, 94, 162-171.	2.1	112
63	Cognitive Neuroscience: Navigating Human Verbal Memory. Current Biology, 2014, 24, R167-R168.	1.8	6
64	Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory. NeuroImage, 2014, 85, 667-677.	2.1	58
65	Different "routes―to a cognitive map: dissociable forms of spatial knowledge derived from route and cartographic map learning. Memory and Cognition, 2014, 42, 1106-1117.	0.9	51
66	Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Scientific Reports, 2014, 4, 6431.	1.6	112
67	Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Human Brain Mapping, 2013, 34, 1070-1087.	1.9	60
68	A comparative study of human and rat hippocampal lowâ€frequency oscillations during spatial navigation. Hippocampus, 2013, 23, 656-661.	0.9	145
69	Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nature Neuroscience, 2013, 16, 349-356.	7.1	277
70	Expected reward modulates encoding-related theta activity before an event. NeuroImage, 2013, 64, 68-74.	2.1	85
71	Medial Septal Nucleus Theta Frequency Deep Brain Stimulation Improves Spatial Working Memory after Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 131-139.	1.7	92
72	Differential Connectivity of Perirhinal and Parahippocampal Cortices within Human Hippocampal Subregions Revealed by High-Resolution Functional Imaging. Journal of Neuroscience, 2012, 32, 6550-6560.	1.7	276

ARNE D EKSTROM

#	Article	IF	CITATIONS
73	Fornix damage limits verbal memory functional compensation in multiple sclerosis. NeuroImage, 2012, 59, 2932-2940.	2.1	43
74	Differential Recruitment of Brain Networks following Route and Cartographic Map Learning of Spatial Environments. PLoS ONE, 2012, 7, e44886.	1.1	40
75	Gray matter loss correlates with mesial temporal lobe neuronal hyperexcitability inside the human seizureâ€onset zone. Epilepsia, 2012, 53, 25-34.	2.6	16
76	Behavioral correlates of human hippocampal delta and theta oscillations during navigation. Journal of Neurophysiology, 2011, 105, 1747-1755.	0.9	122
77	Dissociable networks involved in spatial and temporal order source retrieval. NeuroImage, 2011, 56, 1803-1813.	2.1	125
78	Neural Oscillations Associated with Item and Temporal Order Maintenance in Working Memory. Journal of Neuroscience, 2011, 31, 10803-10810.	1.7	187
79	Dissociations within human hippocampal subregions during encoding and retrieval of spatial information. Hippocampus, 2011, 21, 694-701.	0.9	49
80	Prestimulus theta activity predicts correct source memory retrieval. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10702-10707.	3.3	160
81	Deceived and distorted: Game outcome retrospectively determines the reported time of action Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1458-1469.	0.7	7
82	Effects of youth authorship on the appraisal of paintings Psychology of Aesthetics, Creativity, and the Arts, 2010, 4, 235-246.	1.0	4
83	Single-Neuron Responses in Humans during Execution and Observation of Actions. Current Biology, 2010, 20, 750-756.	1.8	1,062
84	How and when the fMRI BOLD signal relates to underlying neural activity: The danger in dissociation. Brain Research Reviews, 2010, 62, 233-244.	9.1	269
85	A sense of direction in human entorhinal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6487-6492.	3.3	179
86	Family History of Alzheimer's Disease and Hippocampal Structure in Healthy People. American Journal of Psychiatry, 2010, 167, 1399-1406.	4.0	71
87	Right-lateralized Brain Oscillations in Human Spatial Navigation. Journal of Cognitive Neuroscience, 2010, 22, 824-836.	1.1	51
88	Longitudinal changes in medial temporal cortical thickness in normal subjects with the APOE-4 polymorphism. NeuroImage, 2010, 53, 37-43.	2.1	77
89	Reduced hippocampal CA2, CA3, and dentate gyrus activity in asymptomatic people at genetic risk for Alzheimer's disease. NeuroImage, 2010, 53, 1077-1084.	2.1	27
90	Human Hippocampal CA1 Involvement during Allocentric Encoding of Spatial Information. Journal of Neuroscience, 2009, 29, 10512-10519.	1.7	91

ARNE D EKSTROM

#	Article	IF	CITATIONS
91	Advances in high-resolution imaging and computational unfolding of the human hippocampus. NeuroImage, 2009, 47, 42-49.	2.1	94
92	Correlation Between BOLD fMRI and Theta-Band Local Field Potentials in the Human Hippocampal Area. Journal of Neurophysiology, 2009, 101, 2668-2678.	0.9	80
93	Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers. NeuroImage, 2008, 41, 1177-1183.	2.1	193
94	High-resolution depth electrode localization and imaging in patients with pharmacologically intractable epilepsy. Journal of Neurosurgery, 2008, 108, 812-815.	0.9	21
95	Brain Oscillations Control Timing of Single-Neuron Activity in Humans. Journal of Neuroscience, 2007, 27, 3839-3844.	1.7	316
96	Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain. Learning and Memory, 2007, 14, 645-654.	0.5	124
97	Characterizing interneuron and pyramidal cells in the human medial temporal lobe in vivo using extracellular recordings. Hippocampus, 2007, 17, 49-57.	0.9	60
98	Contrasting roles of neural firing rate and local field potentials in human memory. Hippocampus, 2007, 17, 606-617.	0.9	36
99	Human hippocampal theta activity during virtual navigation. Hippocampus, 2005, 15, 881-889.	0.9	346
100	Cellular networks underlying human spatial navigation. Nature, 2003, 425, 184-188.	13.7	1,102
101	NMDA Receptor Antagonism Blocks Experience-Dependent Expansion of Hippocampal "Place Fields― Neuron, 2001, 31, 631-638.	3.8	216