
Michele Michelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5655432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical Engineering Journal, 2018, 347, 119-136.	6.6	145
2	Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. Carbohydrate Polymers, 2018, 192, 327-336.	5.1	108
3	Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules, 2020, 25, 3411.	1.7	101
4	Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresource Technology, 2016, 216, 862-869.	4.8	95
5	Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresource Technology, 2016, 199, 275-278.	4.8	87
6	Screening of filamentous fungi for production of enzymes of biotechnological interest. Brazilian Journal of Microbiology, 2006, 37, 474-480.	0.8	84
7	Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. International Journal of Biological Macromolecules, 2018, 120, 159-169.	3.6	80
8	Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydrate Polymers, 2019, 211, 349-359.	5.1	71
9	Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess and Biosystems Engineering, 2009, 32, 819-824.	1.7	65
10	Purification and characterization of a thermostable \hat{l}_{\pm} -amylase produced by the fungus Paecilomyces variotii. Carbohydrate Research, 2010, 345, 2348-2353.	1.1	60
11	Carboxymethyl cellulose-based films: Effect of organosolv lignin incorporation on physicochemical and antioxidant properties. Journal of Food Engineering, 2020, 285, 110107.	2.7	55
12	Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 17-25.	1.4	47
13	Green synthesis of lignin nano- and micro-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment. International Journal of Biological Macromolecules, 2020, 163, 1798-1809.	3.6	46
14	Trametes versicolor laccase production using agricultural wastes: a comparative study in Erlenmeyer flasks, bioreactor and tray. Bioprocess and Biosystems Engineering, 2020, 43, 507-514.	1.7	44
15	Multi-step approach to add value to corncob: Production of biomass-degrading enzymes, lignin and fermentable sugars. Bioresource Technology, 2018, 247, 582-590.	4.8	41
16	Influence of volumetric oxygen transfer coefficient (kLa) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochemical Engineering Journal, 2013, 80, 19-26.	1.8	40
17	Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 149-155.	1.4	39
18	Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess and Biosystems Engineering, 2012, 35, 1185-1192.	1.7	35

MICHELE MICHELIN

#	Article	IF	CITATIONS
19	Comparative autohydrolysis study of two mixtures of forest and marginal land resources for co-production of biofuels and value-added compounds. Renewable Energy, 2018, 128, 20-29.	4.3	33
20	Properties of a purified thermostable glucoamylase from Aspergillus niveus. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1439-1446.	1.4	32
21	Production and properties of xylanases from Aspergillus terricola Marchal and Aspergillus ochraceus and their use in cellulose pulp bleaching. Bioprocess and Biosystems Engineering, 2010, 33, 813-821.	1.7	31
22	Xylanase and β-Xylosidase Production by Aspergillus ochraceus: New Perspectives for the Application of Wheat Straw Autohydrolysis Liquor. Applied Biochemistry and Biotechnology, 2012, 166, 336-347.	1.4	30
23	Co-production of biofuels and value-added compounds from industrial Eucalyptus globulus bark residues using hydrothermal treatment. Fuel, 2021, 285, 119265.	3.4	29
24	Challenges of Biomass Utilization for Bioenergy in a Climate Change Scenario. Biology, 2021, 10, 1277.	1.3	27
25	Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1979-1984.	1.4	25
26	Purification and biochemical characterization of a novel α-glucosidase from Aspergillus niveus. Antonie Van Leeuwenhoek, 2009, 96, 569-578.	0.7	21
27	Ligninolytic enzymes production during polycyclic aromatic hydrocarbons degradation: effect of soil pH, soil amendments and fungal co-cultivation. Biodegradation, 2021, 32, 193-215.	1.5	19
28	L-lactic acid production from multi-supply autohydrolyzed economically unexploited lignocellulosic biomass. Industrial Crops and Products, 2021, 170, 113775.	2.5	18
29	Sunflower stalk as a carbon source inductive for fungal xylanase production. Industrial Crops and Products, 2020, 153, 112368.	2.5	17
30	A novel xylan degrading β-d-xylosidase: purification and biochemical characterization. World Journal of Microbiology and Biotechnology, 2012, 28, 3179-3186.	1.7	16
31	Purification, partial characterization, and covalent immobilization–stabilization of an extracellular α-amylase from Aspergillus niveus. Folia Microbiologica, 2013, 58, 495-502.	1.1	16
32	Purification and Biochemical Properties of Multiple Xylanases from Aspergillus ochraceus Tolerant to Hg2+ Ion and a Wide Range of pH. Applied Biochemistry and Biotechnology, 2014, 174, 206-220.	1.4	13
33	Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse. Energies, 2021, 14, 4746.	1.6	13
34	Characterization of multiple xylanase forms from Aspergillus tamarii resistant to phenolic compounds. Mycosphere, 2016, 7, 1554-1567.	1.9	13
35	Valorization of lignocellulosic-based wastes. , 2020, , 383-410.		11
36	Development of a packed bed reactor for the removal of aromatic hydrocarbons from soil using laccase/mediator feeding system. Microbiological Research, 2021, 245, 126687.	2.5	11

MICHELE MICHELIN

#	Article	IF	CITATIONS
37	Use of Cassava Peel as Carbon Source for Production of Amylolytic Enzymes by Aspergillus niveus. International Journal of Food Engineering, 2009, 5, .	0.7	10
38	Lignocellulosic Materials and Their Use in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , .	0.1	10
39	Valorization of Wastes From Agrofood and Pulp and Paper Industries Within the Biorefinery Concept: Southwestern Europe Scenario. , 2018, , 487-504.		10
40	Production of Biomass-Degrading Enzymes by Trichoderma reesei Using Liquid Hot Water-Pretreated Corncob in Different Conditions of Oxygen Transfer. Bioenergy Research, 2019, 12, 583-592.	2.2	10
41	Saccharification of different sugarcane bagasse varieties by enzymatic cocktails produced by Mycothermus thermophilus and Trichoderma reesei RP698 cultures in agro-industrial residues. Energy, 2021, 226, 120360.	4.5	9
42	Tunicamycin inhibition of N-glycosylation of α-glucosidase from Aspergillus niveus: partial influence on biochemical properties. Biotechnology Letters, 2010, 32, 1449-1455.	1.1	8
43	Evidence of high production levels of thermostable dextrinizing and saccharogenic amylases by Aspergillus niveus. African Journal of Biotechnology, 2013, 12, 1874-1881.	0.3	8
44	Partial Purification and Characterization of a Thermostable β-Mannanase from Aspergillus foetidus. Applied Sciences (Switzerland), 2015, 5, 881-893.	1.3	8
45	Rehabilitation of a historically contaminated soil by different laccases and laccase-mediator system. Journal of Soils and Sediments, 2022, 22, 1546-1554.	1.5	8
46	Production and action of an Aspergillus phoenicis enzymatic pool using different carbon sources. Brazilian Journal of Food Technology, 2012, 15, 253-260.	0.8	7
47	Enzymes Involved in the Biodegradation of Sugarcane Biomass: Challenges and Perspectives. , 2017, , 55-79.		7
48	Neosartorya glabra polygalacturonase produced from fruit peels as inducers has the potential for application in passion fruit and apple juices. Brazilian Journal of Food Technology, 2017, 20, .	0.8	7
49	Biodegradation of chrysene and benzo[a]pyrene and removal of metals from naturally contaminated soil by isolated Trametes versicolor strain and laccase produced thereof. Environmental Technology and Innovation, 2022, 28, 102737.	3.0	7
50	Cellulose from Lignocellulosic Waste. , 2014, , 1-33.		6
51	Use of Lignocellulosic Materials in Bio-based Packaging. Springer Briefs in Molecular Science, 2018, , 65-85.	0.1	6
52	Lignocellulosic Materials: Sources and Processing Technologies. Springer Briefs in Molecular Science, 2018, , 13-33.	0.1	5
53	Production of Hemicellulases, Xylitol, and Furan from Hemicellulosic Hydrolysates Using Hydrothermal Pretreatment. , 2017, , 285-315.		5
54	Processing, Production Methods and Characterization of Bio-Based Packaging Materials. Springer Briefs in Molecular Science, 2018, , 49-63.	0.1	1

MICHELE MICHELIN

55Food Applications of Lignocellulosic-Based Packaging Materials. Springer Briefs in Molecular Science, 2018, , 87-94.0.1156Conclusion and Future Trends. Springer Briefs in Molecular Science, 2018, , 95-97.0.1157Integrated technologies for extractives recovery, fractionation, and bioethanol production from lignocellulose. , 2022, , 107-139.1	#	Article	IF	CITATIONS
Integrated technologies for extractives recovery, fractionation, and bioethanol production from	55		0.1	1
 Integrated technologies for extractives recovery, fractionation, and bioethanol production from 1 	56	Conclusion and Future Trends. Springer Briefs in Molecular Science, 2018, , 95-97.	0.1	1
	57	Integrated technologies for extractives recovery, fractionation, and bioethanol production from lignocellulose. , 2022, , 107-139.		1