Dnyandeo Pawar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5655277/publications.pdf

Version: 2024-02-01

687335 677123 27 525 13 22 citations h-index g-index papers 29 29 29 710 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	PVA-coated miniaturized flexible fiber optic sensor for acetone detection: a prospective study for non-invasive diabetes diagnosis. Journal of Materials Science: Materials in Electronics, 2022, 33, 2509-2517.	2.2	4
2	Au@ZnO/rGO nanocomposite-based ultra-low detection limit highly sensitive and selective NO ₂ gas sensor. Journal of Materials Chemistry C, 2022, 10, 4295-4305.	5 . 5	30
3	Gas sensors-based on field-effect transistors. , 2021, , 355-375.		O
4	Highly ordered mesoporous V2O5 nanospheres utilized chemiresistive sensors for selective detection of xylene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 265, 115031.	3.5	13
5	Ultra-high sensitive and ultra-low NO2 detection at low-temperature based on ultrathin In2O3 nanosheets. Journal of Materials Science: Materials in Electronics, 2021, 32, 19487-19498.	2.2	3
6	Ultrahigh-responsivity deep-UV photodetector based on heterogeneously integrated AZO/a-Ga2O3 vertical structure. Journal of Alloys and Compounds, 2021, 889, 161599.	5 . 5	8
7	Magneto-optical fiber sensor based on Fabry-Perot interferometer with perovskite magnetic material. Journal of Magnetism and Magnetic Materials, 2020, 499, 166298.	2.3	13
8	Polyvinyl alcohol filled negative axicon tip based highly sensitive fiber optic sensor for acetone sensing. Materials Today: Proceedings, 2020, 28, 1816-1819.	1.8	4
9	High-performance dual cavity-interferometric volatile gas sensor utilizing Graphene/PMMA nanocomposite. Sensors and Actuators B: Chemical, 2020, 312, 127921.	7.8	21
10	Down to ppb level NO2 detection by ZnO/rGO heterojunction based chemiresistive sensors. Chemical Engineering Journal, 2020, 401, 125491.	12.7	86
11	Electric field controlled near-infrared high-speed electro-optic switching modulator integrated with 2D MgO. Optics Letters, 2020, 45, 4611.	3.3	7
12	Fiber Optic Sensor for Acid Detection: An Efficient and Fast Approach for Concentrated Sulphuric Acid Detection. Springer Proceedings in Physics, 2020, , 71-75.	0.2	0
13	A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Mikrochimica Acta, 2019, 186, 253.	5.0	60
14	Fiber optic Fabry–Perot interferometer sensor: an efficient and fast approach for ammonia gas sensing. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 684.	2.1	22
15	Negative axicon tip-based fiber optic interferometer cavity sensor for volatile gas sensing. Optics Express, 2019, 27, 7277.	3.4	37
16	Negative axicon tip micro-cavity with a polymer incorporated optical fiber temperature sensor. OSA Continuum, 2019, 2, 2353.	1.8	5
17	Fe ₃ O ₄ -decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry–Perot interferometer. Analyst, The, 2018, 143, 1890-1898.	3.5	21
18	Low Magnetic Field Sensing Using Manganite (La <inf>0</inf> . <inf>7</inf> Sr <inf>0.3</inf> MnO <inf>3</inf>) Nanoparticles with Optical Fiber Interferometric Approach. , 2018, , .		1

#	Article	IF	CITATIONS
19	Bromothymol blue coated fiber optic Fabry-Perot interferometer for ammonia gas sensor. Proceedings of SPIE, 2017, , .	0.8	2
20	Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA. Journal of Alloys and Compounds, 2017, 695, 2091-2096.	5 . 5	38
21	ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation studies. Optics and Laser Technology, 2017, 89, 46-53.	4.6	23
22	Nanometric Fabry-Perot cavity length modulations: Study using Photonic crystal fiber modal interferometer. , 2017, , .		0
23	Tapered-single mode fiber with an PM-PCF amplifier for refractive index sensing: via trapping and amplifying evanescent waves. , 2017 , , .		0
24	Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections. Applied Physics Letters, 2016, 108, .	3.3	65
25	Birefringence manipulation in tapered polarization-maintaining photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing. Sensors and Actuators A: Physical, 2016, 252, 180-184.	4.1	18
26	Nano-carbon: preparation, assessment, and applications for NH ₃ gas sensor and electromagnetic interference shielding. RSC Advances, 2016, 6, 97266-97275.	3.6	32
27	Highly porous graphene coated Fabry-Perot interferometer optical fiber NH_3 gas sensor. , 2016, , .		6