Frederick Wellstood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/565518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-lived transmons with different electrode layouts. MRS Advances, 2022, 7, 273-277.	0.9	2
2	Hot electron heatsinks for microwave attenuators below 100 mK. Applied Physics Letters, 2019, 114, 152602.	3.3	5
3	Scanning tunneling Andreev microscopy of titanium nitride thin films. Physical Review B, 2019, 100, .	3.2	4
4	Implementation of a generalized controlled-NOT gate between fixed-frequency transmons. Physical Review A, 2019, 99, .	2.5	13
5	Microwave photon Fock state generation by stimulated Raman adiabatic passage. Nature Communications, 2017, 8, 14148.	12.8	43
6	Characterization of coherent population-trapped states in a circuit-QED <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">ĥ system. Physical Review A, 2017, 96, .</mml:mi </mml:math 	2.5	4
7	Microwave attenuators for use with quantum devices below 100 mK. Journal of Applied Physics, 2017, 121, .	2.5	52
8	Simultaneously scanning two connected tips in a scanning tunneling microscope. Journal of Applied Physics, 2017, 121, 214501.	2.5	1
9	Effects of nonequilibrium quasiparticles in a thin-film superconducting microwave resonator under optical illumination. Physical Review B, 2016, 93, .	3.2	7
10	Projected Dipole Moments of Individual Two-Level Defects Extracted Using Circuit Quantum Electrodynamics. Physical Review Letters, 2016, 116, 167002.	7.8	45
11	Raman coherence in a circuit quantum electrodynamics lambda system. Nature Physics, 2016, 12, 75-79.	16.7	45
12	Nonlinear microwave photon occupancy of a driven resonator strongly coupled to a transmon qubit. Physical Review A, 2015, 92, .	2.5	13
13	Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state. Applied Physics Letters, 2015, 106, .	3.3	13
14	A 30 mK, 13.5 T scanning tunneling microscope with two independent tips. Review of Scientific Instruments, 2014, 85, 043706.	1.3	24
15	Plasma etching of superconducting Niobium tips for scanning tunneling microscopy. Journal of Applied Physics, 2014, 116, 014308.	2.5	3
16	Landau-Zener population control and dipole measurement of a two-level-system bath. Physical Review B, 2014, 90, .	3.2	23
17	DC SQUID Phase Qubit Coupled to an On-Chip LC Resonator. IEEE Transactions on Applied Superconductivity, 2013, 23, 1701504-1701504.	1.7	0
18	Spectroscopy of a Cooper-pair box coupled to a two-level system via charge and critical current. Physical Review B, 2013, 87, .	3.2	13

FREDERICK WELLSTOOD

#	Article	IF	CITATIONS
19	Magnetic Flux Noise in dc SQUIDs: Temperature and Geometry Dependence. Physical Review Letters, 2013, 110, 147002.	7.8	79
20	Observation of Autler–Townes effect in a dispersively dressed Jaynes–Cummings system. New Journal of Physics, 2013, 15, 125007.	2.9	25
21	Autler-Townes splitting in a three-dimensional transmon superconducting qubit. Physical Review B, 2013, 88, .	3.2	48
22	Asymmetric superconducting quantum interference devices for suppression of phase diffusion in small Josephson junctions. Journal of Applied Physics, 2013, 113, 183905.	2.5	7
23	Pure dephasing in flux qubits due to flux noise with spectral density scaling as1/fα. Physical Review B, 2012, 85, .	3.2	33
24	An analysis method for asymmetric resonator transmission applied to superconducting devices. Journal of Applied Physics, 2012, 111, .	2.5	155
25	Superposition of Inductive and Capacitive Coupling in Superconducting LC Resonators. IEEE Transactions on Applied Superconductivity, 2011, 21, 875-878.	1.7	3
26	A Cryo-Cooled Scanning SQUID Microscope for Imaging High-Frequency Magnetic Fields. IEEE Transactions on Applied Superconductivity, 2011, 21, 412-415.	1.7	8
27	Anomalous Switching Curves in a dc SQUID Phase Qubit. IEEE Transactions on Applied Superconductivity, 2011, 21, 860-863.	1.7	3
28	Role of Geometry on the Color of Flux Noise in dc SQUIDs. IEEE Transactions on Applied Superconductivity, 2011, 21, 856-859.	1.7	7
29	Identifying Sources of Decoherence in a dc SQUID Phase Qubit With a Sub-\$mu{m m}\$ Junction and Interdigitated Capacitor. IEEE Transactions on Applied Superconductivity, 2011, 21, 867-870.	1.7	1
30	Loss Dependence on Geometry and Applied Power in Superconducting Coplanar Resonators. IEEE Transactions on Applied Superconductivity, 2011, 21, 879-882.	1.7	52
31	Thin-film superconducting resonator tunable to the ground-state hyperfine splitting of 87Rb. AIP Advances, 2011, 1, .	1.3	15
32	Dc SQUID Phase Qubit With an LC Filter. IEEE Transactions on Applied Superconductivity, 2009, 19, 957-960.	1.7	3
33	Multilevel effects in the Rabi oscillations of a Josephson phase qubit. Physical Review B, 2008, 78, .	3.2	26
34	Anomalous avoided level crossings in a Cooper-pair box spectrum. Physical Review B, 2008, 78, .	3.2	43
35	Steady-state thermodynamics of nonequilibrium quasiparticles in a Cooper-pair box. Physical Review B, 2007, 76, .	3.2	21
36	Pulse Current Measurements and Rabi Oscillations in a dc SQUID Phase Qubit. IEEE Transactions on Applied Superconductivity, 2007, 17, 162-165.	1.7	6

#	Article	IF	CITATIONS
37	Strong-Field Effects in the Rabi Oscillations of the Superconducting Phase Qubit. IEEE Transactions on Applied Superconductivity, 2007, 17, 105-108.	1.7	17
38	SINGLE JOSEPHSON JUNCTIONS AS QUBITS. , 2005, , .		0
39	Position noise in scanning superconducting quantum interference device microscopy. Applied Physics Letters, 2004, 84, 5001-5003.	3.3	13
40	Relationship between spatial resolution and noise in scanning superconducting quantum interference device microscopy. Journal of Applied Physics, 2002, 92, 4731-4740.	2.5	21
41	Dynamics of a Charged Fluctuator in an Al–AlOx–Al Single-Electron Transistor. Journal of Low Temperature Physics, 2001, 123, 103-126.	1.4	7
42	Magnetic permeability imaging of metals with a scanning near-field microwave microscope. Applied Physics Letters, 2000, 77, 4404-4406.	3.3	45
43	Temperature dependence of low-frequency noise in Al–Al2O3–Al single-electron transistors. Journal of Applied Physics, 2000, 88, 6536-6540.	2.5	30
44	Imaging of microwave intermodulation fields in a superconducting microstrip resonator. Applied Physics Letters, 1999, 75, 2824-2826.	3.3	21
45	Microwave Nonlinearities in High-Tc Superconductors: The Truth Is out There. Journal of Superconductivity and Novel Magnetism, 1999, 12, 353-362.	0.5	24
46	Behavior of Al–Al2O3–Al single-electron transistors from 85 mK to 5 K. Applied Physics Letters, 1998, 72, 2268-2270.	3.3	9
47	Quantitative topographic imaging using a near-field scanning microwave microscope. Applied Physics Letters, 1998, 72, 1778-1780.	3.3	34
48	Microwave electric-field imaging using a high-Tc scanning superconducting quantum interference device. Applied Physics Letters, 1998, 73, 984-986.	3.3	5
49	Quantitative imaging of sheet resistance with a scanning near-field microwave microscope. Applied Physics Letters, 1998, 72, 861-863.	3.3	109
50	Surface resistance imaging with a scanning near-field microwave microscope. Applied Physics Letters, 1997, 71, 1736-1738.	3.3	89
51	Distributed microwave damping filters for superconducting quantum interference devices. Applied Physics Letters, 1997, 70, 2186-2188.	3.3	15
52	Nearâ€field scanning microwave microscope with 100 μm resolution. Applied Physics Letters, 1996, 69, 3272-3274.	3.3	107
53	Hot-electron effects in metals. Physical Review B, 1994, 49, 5942-5955.	3.2	394
54	Electric field effect control of a superconducting YBa2Cu3O7inductor. Applied Physics Letters, 1993, 62, 3198-3200.	3.3	8

#	Article	IF	CITATIONS
55	Oneâ€dimensional magnetic flux microscope based on the dc superconducting quantum interference device. Applied Physics Letters, 1992, 61, 598-600.	3.3	49